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With the escalating demand for renewable energy sources, photovoltaic (PV) systems have emerged as a pivotal solution for 

sustainable power generation. The efficacy of these systems is paramount for their widespread implementation. This research 

article delves into the efficiency assessment of silicon carbide (SiC) components within a boost converter integrated into a PV 

system. Notably, the boost converter switch is under the intelligent control of an adaptive neuro-fuzzy inference system (ANFIS) 

based maximum power point tracking (MPPT) controller. This innovative approach leverages AI to optimize energy extraction 

from PV panels, thereby enhancing overall system efficiency. The cooperation of SiC components and AI-driven control presents 

a novel perspective on robust and efficient PV systems. To substantiate the research, data collected from the Sidi Bel-Abès PV 

central is utilized to train the ANFIS. The utilization of real-world data enhances the accuracy of the predictive model, thereby 

increasing its applicability to practical scenarios. Integrating AI technologies with PV systems marks a significant advancement 

toward intelligent and adaptive energy systems.

1. INTRODUCTION 

In recent years, the global transition to sustainable 

energy has driven nations to adopt innovative solutions that 

align environmental goals with technological progress. 

Algeria, leveraging its abundant solar potential, has 

adopted this shift through strategic projects, such as the Sidi 

Bel-Abbès photovoltaic (PV) central, which exemplifies 

the country’s commitment to renewable energy deployment 

and clean electricity generation. Beyond national 
initiatives, the success of such PV systems depends on 

continual improvements in power conversion efficiency 

and intelligent control strategies. 

Among the most promising technological advancements, 

the integration of Silicon Carbide (SiC) devices belonging 

to the wide bandgap (WBG) semiconductor family into 

DC-DC boost converters has shown great potential in 

enhancing photovoltaic system performance. Prior studies 

[1] have demonstrated that SiC devices significantly reduce 

switching losses, improve thermal management[2], and 

increase efficiency compared to traditional silicon-based 

converters. A comparative study further highlighted the 

superiority of SiC devices in PV boost converter 

applications [3]. 

Concurrently, Artificial Intelligence (AI) has 

revolutionized PV system optimization, particularly in 

areas such as Maximum Power Point Tracking (MPPT), 

fault detection, and adaptive control[3]. Among the 

advanced AI methods, Adaptive Neuro-Fuzzy Inference 

System (ANFIS) stands out as a powerful hybrid approach 

that combines the learning capabilities of neural networks 

with the reasoning structure of fuzzy logic. This synergy 

allows ANFIS to model highly nonlinear and time-varying 

systems, making it particularly effective in dynamic and 

uncertain environments such as solar energy systems. 

ANFIS offers several advantages over conventional 

controllers, including rapid adaptation to changing 

environmental conditions (irradiance and temperature), 

superior approximation capabilities, and improved 

convergence in MPPT tasks. Its ability to learn from 

historical data while handling ambiguity and imprecision 

makes it well-suited for real-time control and optimization 

of PV systems[4]. Recent implementations in the power 

electronics domain have shown that ANFIS can 

significantly improve the performance of power factor 

correction circuits in single-phase boost converters, 

achieving better efficiency and quicker adaptation to varying 

operational conditions[5]. Despite its proven effectiveness, 

few studies have explored its integration with high-

performance power converters based on Wide Bandgap 
(WBG) materials, especially in PV systems [1]. 

This study addresses that critical gap by proposing a 

hybrid model that combines a SiC-based DC-DC boost 

converter with an ANFIS controller. Through 

comprehensive simulation and performance evaluation, the 

proposed system demonstrates enhanced conversion 

efficiency, faster dynamic response, and greater stability 

under variable operating conditions, thus contributing to the 

development of intelligent, high-performance PV systems. 

By bridging the domains of power electronics and AI-

driven control, this research contributes to the next 

generation of intelligent and efficient PV systems, 

particularly in high-potential regions like Algeria. 

2. MATERIAL AND METHODS  

2.1 SIDI BELABESS PV CENTRAL 

The Sidi Bel Abbès solar energy facility serves as a 

notable example of renewable energy innovation, utilizing 

HSL60P6/250WC-DC panels, which are known for their 

efficiency and reliability. The facility is equipped with 12 

inverters connected to 3984 modules, generating a total 

output of 12 MW. The configuration includes two strings 

of 24 modules in series, with 83 modules in parallel per 

string, optimizing energy extraction and ensuring 

operational stability. This facility reflects a strong 

commitment to harnessing solar power to address current 

energy needs and long-term sustainability goals. 

In the current study, focus is placed on four PV panels, 

each producing 1000W. These panels drive the energy 

generation process, with their characteristics influencing 

the study’s results (Table 1). The generated power is fed 

into a SiC-based DC-DC boost converter, designed to step 
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up the voltage to 400V, with its parameters detailed in 

Table 2. 

Table 1 

PV panel parameters 

Parameter Symbol Value 

Maximum power (W) Pmpp 250 

Voltage @ Pmpp (V) Vmpp 30.4 

Current @ Pmpp (A) Impp 8.23 

Short circuit current (A) Isc 8.79 

Open voltage current (V) Voc 37.7 

Temperature coefficient of open 

circuit voltage (%/°C) 

Β -0.31 

Temperature coefficient of short 
circuit current (%/°C) 

Α +0.05 

Surface (m2) S 1.62 

Number of series cells Ns 60 

Table 2 

DC-DC boost converter parameters 

Parameter Device specification 

Inductor (mH) 1.7 

Capacitor (µF) 21.8 

Resistor (Ω) 160 

Input voltage(V) 121 

Output voltage(V) 400 

Estimate ripple current (A) 1.65 

Switch frequency(kHz) 20 

Duty cycle 0.697 

Estimate ripple voltage(V) 8 

2.2 SIC SEMICONDUCTOR DEVICES 

SiC (silicon carbide) power devices are advanced 
semiconductor components used in power electronics for 

applications like electric vehicles, renewable energy 

systems, and industrial motor drives. Made from silicon 

carbide, these devices offer several advantages over 

traditional silicon-based devices, including a higher 

breakdown voltage, better thermal conductivity, and a wider 

operating temperature range, making them suitable for harsh 

environments[6]. 

One of their key benefits is lower switching losses, 

allowing them to switch faster and more efficiently, which 

reduces energy loss and the size and weight of power 

electronics systems. While SiC devices are still more 

expensive than silicon-based alternatives, their superior 

efficiency and performance make them increasingly popular 

across various industries. 

Table 3 

Power devices parameters  

Manufacture ST APT Microsemi Infineon 

Tech 

Part number SCT30

N120 

APT1206

0B2VRF 

APT2X21

DC120J 

IDP18E120 

Breakdown 

voltage (v) rated 

1200 1200 1200 1200 

Rated current (i) 34 @ 
100 °C 

20@25°C 20@100°C 31@25°C 

Maximum 

junction 

temperature 

(◦C) 

200 150 175 150 

Gate-source 

voltage 

-

10/+20 

-30/+30 / / 

2.3 AI (ANFIS) BASED MPPT CONTROLLER  

ANFIS-based MPPT controllers are increasingly popular 

for optimizing power output in solar PV systems. By 

combining fuzzy logic and neural networks, they 

continuously monitor solar panel output and adjust voltage. 

They also enable the current to be maintained at the 

maximum power point, based on past performance data. This 

results in improved accuracy, efficiency, and adaptability, 

especially under conditions like shading or partial sunlight. 

Although they are more complex and may require additional 

components, their benefits in energy efficiency and lower 

operating costs make them a valuable investment for solar 

installations. ANFIS-based controllers are a promising area 

of research in optimizing PV systems. 

The equations used in the ANFIS-based MPPT algorithm 

can be broken down into the following steps: 

Step 1: Fuzzification of Inputs: 

Input variables are transformed into fuzzy values using 

Gaussian membership functions, which determine how 

strongly an input belongs to a linguistic term (e.g., "low," 

"medium," "high"). 

For each input variable xi (where i = 1,2,3,…..,n), fuzzify 

the input using Gaussian membership functions: 

μ
𝐴𝑖

(𝑥𝑖) = exp (−
(𝑥𝑖−𝑐𝑖𝑖)

2σ𝑖
2 ) ,                     (1) 

where ci is the center of the ith Gaussian membership 

function, and i is the standard deviation of the ith Gaussian 

membership function. 

Step 2: Rule Activation: 

The activation weight of each rule is computed by 

multiplying the membership values of the associated input 

variables, indicating the "firing strength" of each rule. 

Combine the fuzzified inputs to compute the activation 

weight of each rule Rj: 

ω𝑗 = ∏ μ
𝐴𝑖

𝑛
𝑖=1 (𝑥𝑖).                             (2) 

Step 3: Normalization: 

The activation weights are normalized so that their sum 

equals 1, converting them into fuzzy probabilities. 

Normalize the activation weights of the rules: 

ω𝑗
′ =

ω𝑗

∑ ω𝑗
𝑚
𝑗=1

,                                 (3) 

where m is the total number of rules. 

Step 4: Inference: 

The consequent parameters of each rule are computed, 

representing the output of the rule based on the input 

variables. 

For each rule Rj, compute the consequent parameter yj 

using a linear or nonlinear function: 

𝑦𝑗 = 𝑝0𝑗 + 𝑝1𝑗𝑥1+. . . +𝑝𝑛𝑗𝑥𝑛.                 (4) 

Step 5: Defuzzification: 

The outputs of all rules are combined using the weighted 

average, with normalized firing strengths as weights, to 

generate a single crisp output. 

Combine the consequent outputs of all the rules to produce 

the final output: 

𝑦
^

=
∑ (ω𝑗

′ .𝑦𝑗
𝑚
𝑗=1 )

∑ ω𝑗
′𝑚

𝑗

.                                (5) 

Step 6: Parameter Adaptation: 

The parameters of the membership functions and 

consequent parameters are adjusted using a learning 

algorithm (like gradient descent) to minimize the error 

between the actual and desired output. 
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Δ𝑐𝑖 = −η
𝜕𝐸

𝜕𝑐𝑖𝑗
 

(6) 

Δσ𝑖 = −η
𝜕𝐸

𝜕σ𝑖𝑗
 

(7) 

where η is the learning rate and E is the error. 

Step 7: Output Adjustment: 

The consequent parameters are fine-tuned using gradient 

descent to minimize the error and optimize the output. 

Δ𝑝𝑖 = −η
𝜕𝐸

𝜕𝑝𝑖𝑗
 

(8) 

where E is the error. 

Step 8: Training: 

The ANFIS model learns iteratively from the training 

dataset, refining its parameters over multiple epochs to 

improve prediction accuracy. 

Step 9: Evaluation: 

After training, the model makes predictions on unseen 

data, going through fuzzification, rule activation, inference, 

and defuzzification to produce the final output. 

Data used for training the ANFIS controller was collected 

from the central for one year (2021). We have used 

Irradiance and temperature as inputs, and the output is the 

panel voltage. 

 
a 

 
b 

Fig. 1 – ANFIS controller architecture. 

The power production data from Sidi Bel Abbès Central 

reveals that in January, power output gradually increases 

starting around 8:00 AM, peaking at approximately 8,700 

watts at midday. This slower rise is attributed to the lower 

sun angle and shorter daylight hours. In contrast, July 

experiences a quicker rise beginning at 6:30 AM, with a 

higher peak of 10,200 watts earlier in the day, driven by 

stronger solar radiation and longer sunlight hours. While 

both months show similar patterns, the July curve 

demonstrates a more rapid and intense increase in power 

production, resulting in a higher peak compared to January’s 

more gradual rise and lower peak. This data was used to 

generate the ANFIS controller, optimizing the power 

production of the PV system. 

 

Fig. 2 – ANFIS controller architecture. 

 

Fig. 3 – Output results for ANFIS. 

We used one year of data collected from the central system 

to train the adaptive neuro-fuzzy inference system (ANFIS) 

controller. After training the model, the results are illustrated 

in Fig. 3. 

In this figure, the blue line represents the expected output 

(target data), while the red line indicates the ANFIS 

predicted output during training. It is evident that the 

predicted output closely follows the expected values, with 

minimal deviation. This indicates a high level of accuracy in 

the learning process and confirms that the ANFIS controller 

has successfully captured the underlying data patterns. 

The smooth alignment between predicted and actual 

values demonstrates the model's ability to generalize, 

making it suitable for reliable performance in further testing 

and real-world implementation. Overall, this figure validates 

the effectiveness of the training phase for our ANFIS-based 

control system. 

2.4 SIMULATED MODEL 

The co-simulation framework integrates the strengths of 

MATLAB Simulink and ANSYS Simplorer, modeling a 

complex PV system with a SiC-based boost converter and 

AI-driven MPPT control. Using Sim2Sim and 

AnsoftSFunction interfaces, data flows seamlessly between 

the tools. Simulink models the PV panels and ANFIS-based 

MPPT algorithm, while Simplorer simulates the boost 

converter. During co-simulation, data is exchanged 

bidirectionally, enabling dynamic interaction and in-depth 
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analysis of the system's behavior. This method provides 

valuable insights into the converter's operation, the AI-

controlled MPPT, and the panel's responses. While the 

approach provides a comprehensive view, it requires careful 

configuration and may face challenges in communication 

synchronization and debugging. Overall, this framework 

combines specialized capabilities for accurate modeling and 

realistic exploration of the PV system's efficiency and 

reliability. 

 

Fig. 4 – MATLAB simulated model. 

 

Fig. 5 – Ansys simulated model. 

 

Fig. 6 – Dynamic changes in irradiance. 

We have incorporated tests to evaluate the reliability of 

the ANFIS MPPT controller under partial shading 

conditions. Figure 6 presents the dynamic changes in 

irradiance applied to the system, simulating various 

scenarios to evaluate the performance of the MPPT 

algorithm. These scenarios encompass both gradual and 

rapid changes in irradiance, simulating the effects of 

partial shading on the PV system. 

• Between 0 seconds < t < 0.2 seconds, a smooth and 

significant change in irradiance is applied, 

evaluating the algorithm’s adaptability to partial 

shading. 

• At t = 0.2 seconds, a fast and significant change in 

irradiance is simulated, which challenges the 

responsiveness of the MPPT controller under partial 

shading conditions. 

• At t = 0.4 seconds, a fast but smaller change in 

irradiance is tested, assessing the algorithm’s agility 

in tracking the maximum power point under partial 

shading. 

• Between 0.6 seconds < t < 0.8 seconds, another smooth 

and significant change in irradiance unfolds, further 

testing the algorithm’s adaptability under varying 

irradiance caused by partial shading. 

• During fixed input with low irradiance between 0 < t 

< 0.2 seconds and 0.8 < t < 1 seconds, the algorithm 

demonstrates its stability under consistent shading 

conditions. 

• Fixed changes with high irradiance between 0.2 < t < 

0.4 seconds and 0.4 < t < 0.6 seconds assess the 

tracking efficiency of the algorithm under partial 

shading. 

Through these simulations, we have ensured a 

comprehensive evaluation of the ANFIS controller's 

ability to handle partial shading, providing insights into 

its reliability and adaptability under real-world 

conditions. These tests demonstrate that the ANFIS 

controller remains effective in tracking the maximum 

power point even when subjected to partial shading, 

further validating its robustness in dynamic environments. 

3. RESULTS AND DISCUSSION 

Efficiency is a critical metric in power electronics 

systems, directly impacting energy conversion and system 

performance. The comparison of power efficiency 

between the SiC-based and Si-based boost converters 

reveals a significant advantage for the SiC system. The 

SiC-based boost converter consistently maintains higher 

efficiency levels across a wide range of load conditions. 

This efficiency gain is attributed to the inherent properties 

of SiC devices, including their lower conduction losses 

and reduced switching losses. 

In the realm of power electronics systems, efficiency is 

a paramount metric, serving as a barometer of energy 

conversion efficacy and overall system performance. In 

the context of our investigation, we focus on the power 

output efficiency of SiC-based and Si-based boost 

converters. 

The power output profiles in Fig. 7 illustrate a clear 

efficiency advantage for the SiC-based boost converter 

compared to its Si-based counterpart under varying load 

conditions—this efficiency enhancement results from 

SiC's superior material properties, which reduce both 

conduction and switching losses. SiC devices can handle 

higher current densities with lower resistive losses, and 

their faster switching capabilities minimize energy 

dissipation, resulting in improved overall efficiency. 
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Fig. 7 – Comprehensive power output comparison. 

The SiC-based converter maintains a higher power 

output efficiency across its operational range, 

highlighting the significant impact of SiC technology on 

power electronics. This improvement in efficiency 

positions the SiC-based converter as a key player in 

achieving more sustainable power conversion systems 

with energy savings and enhanced performance. 

Voltage and current waveforms, crucial indicators of 

system performance, further emphasize the SiC 

converter's advantages. The SiC system exhibits superior 

current response, featuring faster rise and fall times, as 

well as reduced ripple, which leads to enhanced power 

conversion efficiency. These benefits stem from the high-

frequency switching capability of SiC devices, resulting 

in less wasted energy and a more stable system. 

Moving forward, we explore the intricate relationship 

between the adaptive neuro-fuzzy inference system (ANFIS) 

algorithm's rapid response and the efficiency dynamics of the 

SiC-based boost converter. As shown in Figures 8(a), 8(b), 

and 8(c), the ANFIS algorithm effectively adapts to varying 

irradiance conditions, quickly adjusting to changes in power 

demand while efficiently tracking the maximum power point. 

This agility leads to optimized energy extraction, positioning 

the ANFIS-controlled SiC-based boost converter as a 

responsive solution for real-world applications. 

 
a 

 
b 

 
c 

Fig. 8 – (a, b, c) Comprehensive power output waveform comparison for 

different times. 

Figures 8(a), 8(b), and 8(c) further illustrate the 

converter's efficiency under dynamic conditions, 

highlighting its ability to maintain high power efficiency. 

The collaboration between SiC devices and ANFIS control 

enhances system performance by minimizing losses and 

optimizing power conversion. Together, the ANFIS 

algorithm and SiC technology form a dynamic, efficient 

power electronics system capable of adapting to the 

complexities of renewable energy generation. 

 
(a) 
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Fig. 10 – (a, b) Comprehensive power output waveform comparison for 

different times. 

The effectiveness of the maximum power point tracking 

(MPPT) technique is crucial in various PV applications, 

including satellite power supplies, spacecraft, and large-

scale PV plants. The MPPT performance was quantitatively 

evaluated through simulations, showing the system's stable 

response. Efficiency can also be calculated using the 

following formula. 

Waveform oscillations in a boost converter, caused by 

factors such as load fluctuations, switching transitions, or 

component variations, can negatively affect its reliability. 

These oscillations increase stress on the components, 

accelerating wear and reducing their lifespan. The issue is 

exacerbated by thermal stress, resulting in higher energy 

losses and increased operating temperatures. Voltage and 

current spikes from these oscillations may also exceed 

component limits, potentially causing insulation breakdown 

and compromising overall reliability. 

𝜂tech =
1

𝑚
∑

𝑃𝑗

𝑃max,𝑗

𝑚

𝑗=0

 (9) 

The equation becomes: 

η𝑡𝑒𝑐ℎ =
1

𝑚
∑ 1 −

𝑃s

𝑃max,𝑗

𝑚

𝑗=0

 (10) 

while 

𝑃s = 𝑃max,i − 𝑃i  (11) 

where, ղtech is the technique efficiency, m is the number of 

samples, Ps is the squandered, and Pi is the panel power. 

Figure 11 shows the converter efficiency of SiC-based and 

Si-based devices across various switching frequencies. 

The SiC-based converter maintains high efficiency above 

96%, even at 100 kHz, while the Si-based converter shows a 

noticeable drop, falling below 89%. This demonstrates the 

better high-frequency performance of SiC devices, making 

them more suitable for efficient, high-speed power conversion. 

 

 

Fig. 11 – (a, b) Comparative converter efficiency. 

4. CONCLUSION 

This study presents a comprehensive efficiency assessment 

of a PV system integrating a SiC-based DC-DC boost 

converter controlled via an ANFIS-based MPPT algorithm. 

Compared to conventional silicon-based systems, the SiC 

configuration demonstrated a notable increase in tracking 

efficiency (up to 98.6%) and a reduction in ripple and response 

time. The ANFIS controller also demonstrated strong 

adaptability under partial shading, maintaining an efficiency 

of over 97%. 

These results confirm the synergistic advantage of 

combining WBG materials with intelligent control algorithms. 

By bridging the gap between AI-driven MPPT and advanced 

power electronics, this research contributes a scalable and 

efficient solution for next-generation PV systems. Future work 

may extend to real-time hardware-in-the-loop (HIL) 

implementations to validate field applicability. 
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