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This paper proposes a novel approach for enhancing the optimization of nonlinear high-gain observers by utilizing a genetic 

algorithm (GA) to improve state estimation precision in chemical reactors. Unlike traditional tuning methods, the GA optimally 

seeks optimal observer gain parameters that yield a minimum estimation error and improve convergence rates. The new method is 

used to benchmark a nonlinear continuous stirred-tank reactor (CSTR) model. The simulation outcomes validate that the GA-

optimized observer exhibits a substantially enhanced rate of convergence and accuracy in estimating the temperature and 

concentration states compared to traditional methods. Additionally, the technique enables smaller dependence on physical sensors, 

thus promoting stronger and less expensive monitoring and control systems. The approach introduced is model-independent and 

applicable in real-time to an extensive class of engineering systems, including electrical and power systems. This work highlights the 

practical benefits of integrating metaheuristic optimization and nonlinear observer design in industrial processes.

1. INTRODUCTION 

Artificial Intelligence (AI), especially when combined 

with machine learning and metaheuristic optimization, has 

become a powerful enabler of advanced estimation and 

control strategies for nonlinear dynamic systems. In the 

context of the chemical process industries, AI-based 

approaches significantly contribute to automating complex 

tasks and enhancing system performance through intelligent 

observer design and adaptive parameter tuning [1,2]. Recent 

contributions have highlighted the potential of hybrid 

metaheuristic algorithms integrated with deep learning to 

enhance estimation accuracy and computational efficiency. 

For example, Sumithra et al. [3] developed a dragonfly–

whale–lion optimized deep neural network for accurately 

estimating software cost, effort, and time. In related work, 

Babu et al. [4] proposed a modular neural network optimized 

by the Cuckoo Search algorithm for effective fault 

classification in wind turbines, demonstrating the adaptability 

of such techniques to various nonlinear and dynamic 

environments. One of the classic issues with chemical 

reactors is the reliable estimation of internal states, 

particularly in nonlinear systems where sensor constraints, 

disturbances, and model uncertainty limit real-time 

monitoring. High-gain observers (HGOs) have been among 

the robust techniques employed for estimating unmeasured 

states from dynamic models and output measurements 

available [5–7]. They are based on gain amplification and are 

used to enable fast convergence of errors under any noisy or 

uncertain conditions. But the performance of an HGO is 

susceptible to the selection of its gain parameter. An HGO 

may converge very slowly or be very noise-sensitive if its 

gain is not adequately set. Conventional tuning procedures 

are often based on heuristic rules or even direct manual 

tuning and may be inadequate for nonlinear and time-varying 

operations. It is due to this reason that Artificial Intelligence 

tools, specifically GAs, prove to be a suitable alternative for 

automating gain selection [8,9]. GAs have been shown to 

possess global search capability and stability in solving 

challenging, non-convex optimization problems. 

There has also been some recent research extending the 

use of HGOs to more complicated and organized systems. 

Ahmed-Ali et al. [10], for example, introduced an HGO-

based output feedback control of nonlinear partial 

differential equation systems. Gerbet and Röbenack [11] 

designed a high-gain observer for polynomial dynamical 

systems for embedded control. Mousavi and Guay [12] 

proposed filtered multi-high-gain observer structures to 

solve estimation for multiscaling multi-phase dynamics 

systems. The contributions mentioned above indicate future 

lines of research in HGO methods for various types of 

systems. Our interest in this paper is in optimizing and 

designing a high-gain observer for a nonlinear continuous 

stirred tank reactor (CSTR). The CSTR is a highly tested 

benchmark system in observation and control experiments 

due to its nonlinear and robust dynamics, as well as its 

sensitivity to reaction kinetics [13,14]. Our novel 

contribution is adopting a GA to tune the observer gain 

independently, enhancing the convergence rate and 

accuracy of the estimated states (temperature and 

concentration), even in uncertainty and disturbances. 

Simulation experiments confirm the proposed approach 

through the demonstration of enhanced estimation 

performance over conventional methods. The observer also 

substantiates state reconstruction without sensor 

infrastructure, hence being deployable for real-time 

implementations. The proposed framework is model-free 

and deployable in multiple disciplines, including electrical, 

energy, and environmental systems. 

In addition to these developments, recent contributions 

published in the Revue Roumaine des Sciences Techniques, 

Série Électrotechnique et Énergétique have emphasized the 

integration of advanced control strategies with artificial 

intelligence and optimization methods. For instance, 

Roubache and Chaouch [15] investigated nonlinear fault-

tolerant control approaches for electric vehicle drives, while 

Amrane et al. [16] proposed adaptive nonlinear control 

schemes for variable-speed wind turbines. More recently, 

Elumalai [17] investigated the application of neural 

network-based controllers to enhance power quality and 

tracking performance in renewable energy systems. A 2025 
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study further advanced this trend by applying artificial 

neural networks for pitch angle control in wind turbines 

[18]. These works highlight the growing role of AI-driven 

and observer-based techniques across different energy and 

process domains, reinforcing their relevance for chemical 

reactor state estimation and control. 

2. CHEMICAL REACTOR PROCESS MODEL  

A chemical reactor is a process vessel designed specially 

to enable chemical reactions and is regarded as a unit 

operation of basic importance in chemical process analysis 

[13]. It is designed to create the optimal conditions for 

chemical conversion, including sufficient temperature, 

pressure, and proper mixing of the reactants. The design 

and operation of a chemical reactor are dictated by 

numerous factors, including the reaction type, the required 

yield of the product, and safety considerations [14]. 

There are several types of reactors, including batch 

reactors, plug-flow reactors (PFR), semi-batch reactors, and 

continuous stirred-tank reactors (CSTR) [19]. Batch 

reactors are typically used at the laboratory scale for 

measuring kinetics. In contrast, continuous reactors, such as 

CSTRs, are commonly employed in industrial applications, 

where reactants are fed continuously and products are 
removed simultaneously [13]. 

Some recent research has investigated chemical reactor 

performance from various perspectives. For instance, a 

process safety time-based design hypothesis was proposed 

for batch reactors [20]; multi-objective optimization 

methods have been proposed for batch processes [21]; and 

new control methods have been utilized in CSTR systems 

[22]. Here, we emphasize the model CSTR due to its 

extensive utilization in both environmental and chemical 

engineering. Otherwise known as the mixed flow reactor 

(MFR), back-mix reactor, or continuous-flow stirred-tank 

reactor (CFSTR), the CSTR incorporates ideal mixing 

conditions and thereby serves as a default reference point 

for observer and controller validation [23]. Our research 

aims to improve the estimation of unmonitored states, such 

as concentration and temperature, which are crucial for 

achieving optimal reactor performance and stability. 

Because the CSTR is nonlinear and measurements are 

constrained, we introduce an artificial intelligence-

optimized high-gain observer framework to provide precise 

real-time state estimation despite disturbances and 

uncertainty. Emerging technologies in reactor modeling and 

regulation have also accentuated the need for accurate 

estimation techniques. For example, [24] offers multi-

objective optimization of batch systems, while [25] 

suggests an improved control strategy for CSTRs. These 

technologies underpin the emerging trend towards model-

based and observer-based methodologies in chemical 

process systems. In the next section, we introduce the 

mathematical model of the CSTR employed in this research 

as the basis for observer design and optimization.  

Figure 1 illustrates the reactor structure and the 

observation system, including the proposed observer. This 

reactor is equipped with a double jacket through which a 

coolant fluid circulates, allowing the reactor's contents to be 

cooled. 

 
Fig. 1 – Schematic of a well-stirred continuous reactor (CSTR). 

Table 1 

Parameters 

Variable/Parameter Notation Value 

Feed flow rate q 100 l /min 

Feed concentration 𝐶𝐴𝑓 1mol/l 

Feed temperature  𝑇𝑓 350 K 

Cooling temperature 𝑇𝑐𝑓 350 K 

Reactor volume V 100 l 

Heat transfer coefficient ℎ𝐴 7*105 cal/min/K 

Reaction rate constant 𝐾0 7.2*1010min−1 
Activation energy E/R regular 

Heat of reaction ∆H -2*105 cal/mol 

Fluid densities P, 𝑃𝑐 1*103 g /l 

Specific heats 𝐶𝑝, 𝐶𝑝𝑐  1cal /g/k 

The equations of the system are generalized in the 

following form [26]: 

{

𝐶𝐴̇ =
𝑞

𝑣
(𝐶𝐴𝑓 − 𝐶𝐴) − 𝐾0𝐶𝐴e

−
E

R𝑇,

𝑇̇ =
𝑞

𝑉
(𝑇𝑓 − 𝑇) −

∆𝐻𝐾0

𝑃𝐶𝑝
𝐶𝐴e

−
E

R𝑇 +
𝑃c𝐶pc

𝑃𝐶p𝑉
𝑞𝐶 (1 − e

− 
ℎ𝐴

𝑃𝑐𝐶𝑝𝑐𝑞𝐶)(𝑇𝐶𝑓 − 𝑇).
(1) 

where 𝐶𝐴, the concentration of the product at the outlet of the 

reactor, is the measured variable, 𝑞𝑐 is the control variable, 

and 𝐶𝐴𝑓 is the disturbance. The model stands for the operating 

points 𝐶𝐴= 0.06, 0.1, and 0.13. The following table gives the 

results obtained for different values of 𝐶A
0: 

Table 2 

Initial conditions. 

𝐶A
0(mol/l) 0.06 0.1 0.13 

𝑇0(k) 449.47 438.54 432.92 

𝑞c
0(l/mn) 89.03 103.41 110.03 

 

The dynamic process represented by:  

{

𝐶̇𝐴 =
𝑞

𝑉
(𝐶𝐴𝑓 − 𝐶𝐴) − 𝐾0𝐶𝐴𝑒

−𝐸
𝑅𝑇 = 𝑓1 ,

𝑇̇ =
𝑞

𝑉
(𝑇𝑓 − 𝑇)−

∆𝐻𝐾0

𝑃𝐶𝑃
𝐶𝐴𝑒

−𝐸
𝑅𝑇 +

𝑃𝑐𝐶pc

𝑃𝐶𝑃𝑉
𝑞𝐶 (1 − 𝑒

−ℎ𝐴
𝑃𝐶𝐶𝑃𝐶𝑞𝐶)(𝑇𝐶𝑓 − 𝑇) = 𝑓2 .

(2) 

3. HIGH-GAIN OBSERVER DESIGN FOR 

CONTROL AFFINE SYSTEMS 

Consider the general nonlinear system described by: 

 {
𝐱̇ = 𝐟(𝐱, 𝐮),
𝐲 = 𝐡(𝐱),

.  (3) 

where 𝐱 ∈ 𝑅𝑛; 𝐲 ∈ 𝑅𝑝 ; 𝐮 ∈ 𝑅𝑚 ; 𝐟: 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑛, and 

𝐡: 𝑅𝑛 → 𝑅𝑝  are assumed to be smooth functions. 

The transformed system appearing simpler, we will begin 

by designing an observer for system (3). We first write system 

(3) in a compact form for [27]: 



3 Souaad Tahraoui, et al. 593 

 

 {
𝐳̇ = 𝐀𝐳 + 𝛙(𝐳) + 𝚽(𝐳)𝐮,

𝐲 = 𝐂𝐳,
. (4) 

where  

𝐀 =

(

 
 

0 1 0 … 0
0 0 1 ⋱ ⋮
⋮
0
0 0

⋱ ⋱ 0
0 1

… 0 0)

 
 

, 

𝛙(𝐳) =

(

 
 
 
 

0
0
.
.
.
0

ψ(𝑧1, … , 𝑧𝑛))

 
 
 
 

, 

𝚽(𝐳) =

(

 
 
 
 

φ(𝑧1)

φ(𝑧1, 𝑧2)
,
.
.

φ(𝑧1, … , 𝑧𝑛−1)

φ(𝑧1, … , 𝑧𝑛) )

 
 
 
 

, 

𝑐 = (1, 0, . . .  0 ). 

Note that the nonlinearity 𝚽(𝐳) is said to be triangular. 

In effect, an observer for (4) is given by: 

𝐳̇̂ = 𝐀𝐳̂ +𝛙(𝐳̂) + 𝚽(𝐳̂)𝐮+ 𝑘θ(𝐲 − 𝐂𝐳̂), (5) 

where 𝑘θ = ∆θ𝑘 with ∆θ= diag (
1

θ
,
1

θ2
, … ,

1

θ𝑛
) and  θ > 0, 

K is a matrix such that the matrix (𝐀 − 𝐊𝐂)) is stable. Now, 

we know that 

𝐳̇ =
𝜕𝚽(𝑥)

𝜕𝑥
𝐱̇= 

 =
∂𝚽(𝒙)

∂x
(𝐟(𝑥) + 𝐠(𝑥)𝐮)  (6) 

= 𝐀𝐳 + 𝜓(𝑧) +Φ(𝑧)𝑢 

and 

 𝑌 = ℎ(𝑥) + ℎ(𝛷−1(𝑧)) = 𝐶𝑧.  (7) 

On the other hand, 

 𝑧̂ = 𝛷(𝑥̂). (8) 

That is, 

 𝑧̇̂ =
𝜕𝛷(𝑥̂)

𝜕𝑥
𝑥̇̂. (9) 

and therefore 

𝑥̇̂ =
𝜕𝛷−1(𝑥)

𝜕𝑥
𝑧̇̂ = 

=
𝜕𝚽−1

𝜕𝑥
(𝐱̂)[𝐀𝐳̂ +𝛙(𝐳̂) + 𝚽(𝐳̂)𝐮+ 𝑘𝜃(𝐲 − 𝐂𝐳̂)]= (11) 

 = 𝐟(𝐱̂) + 𝐠(𝐱̂)𝐮 +
𝜕𝚽−1

𝜕𝑥
(𝐱̂)(𝑘𝜃(𝐲 − 𝐡(𝐱̂)). (12) 

Hence, in the original coordinates: 

𝐱̇̂ = 𝐟(𝐱̂) + 𝐠(𝐱̂)𝐮 +
𝜕𝚽−1(𝐱̂)

𝜕𝑥
(𝑘𝜃(𝐲 − 𝐡(𝐱̂)), (13) 

and 𝐠(𝐱̂) must be uniformly Lipschitz continuous.  

A careful choice of the high-gain observer's design 

parameter should ensure a balance between fast 

convergence and robustness against measurement noise. 

4. HIGH-GAIN OBSERVER SYNTHESIS OF 

CHEMICAL REACTOR PROCESS AND RESULTS 

DISCUSSION  

The construction of a high-gain observer can be 

synthesized in the coordinate space z. To obtain the 

observer's equations in the original coordinates, it suffices 

to multiply the gain vector in the new coordinates ∆θ
−1k by 

the inverse of the Jacobian transformation matrix 
∂𝚽−1

∂x
(𝐱). 

AN: 

𝐶̇𝐴 =
𝑞

100
(1 − 𝐶𝐴) − 7.2 × 10

10 × 𝐶𝐴 × exp (
−104

𝑇
), 

𝑇̇ =
𝑞

100
(350 − 𝑇) + 14.4 × 1012 × CA × exp(

−104

T
) + 

 +
𝑞𝑐

100
(1 − exp(

−7×102

𝑞𝑐
)) (350 − 𝑇), (20) 

𝑦1 = 𝐶𝐴, and 𝑦2 = 𝑇. 

For the system under consideration, the observer's 

equations in the original coordinates are detailed as 

follows:

{
 
 
 
 

 
 
 
 𝐶̂̇𝐴 =

𝑞

𝑉
(1 − 𝐶𝐴) − 7.2 × 10

10 × 𝐶𝐴 × exp (
−104

𝑇̂
) + θ𝑘1(𝐶𝐴 − 𝐶𝐴)

𝑇̂̇ =
𝑞

100
(350 − 𝑇̂) + 14.4 × 1012 × ĈA × exp (

−104

𝑇
) +

𝑞𝑐

100
(1 − exp (

−7×102

𝑞𝑐
))(350 − 𝑇̂) +

  +(
𝑞

100
+7.2×1010×exp (−10

4

𝑇)⁄

7.2×1014

𝑇2
𝐶𝐴×exp(−10

4
𝑇⁄ )

× θℎ1 + 𝛉
𝟐𝐾2 ×

𝑇2

7.2×1014×𝐶𝐴×exp(−10
4
𝑇⁄ )
)

(𝐶𝐴 − 𝐶𝐴)

      (14) 

The gain K is chosen equal to: 𝐊 = (𝑘1
𝑘2
) = (1020). 

5. GENETIC ALGORITHMS OPTIMIZATION  

A genetic algorithm (GA) is a sophisticated heuristic 

optimization technique rooted in the principles of natural 

selection and genetics. It leverages evolutionary processes, 

such as selection, crossover, and mutation, to iteratively 

refine a population of potential solutions to a given 

problem. In GA, a diverse set of candidate solutions 

evolves over multiple generations, with the fittest 

individuals selected to pass their genetic material to future 

generations. This iterative mechanism, driven by crossover 

and mutation, generates new solutions aimed at achieving 

the optimal or near-optimal solution [28]. Conceptually, 

GA treats optimization problems like ecosystems, where 

feasible solutions represent organisms within this 

environment. These solutions are encoded using binary 

strings or other symbolic formats from a predefined set. By 

mimicking natural evolutionary processes, GAs efficiently 

navigate complex, high-dimensional search spaces, often 

outperforming traditional optimization methods in terms of 

both robustness and solution quality [28]. 

The success of GAs in addressing complex problems is 

widely recognized across various fields. For example, GAs 

have been employed to enhance constrained learning path 

adaptations [29], optimize parameters in the quantum 

approximate optimization algorithm [30], solve flexible job 
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shop scheduling issues using hybrid methods [31], improve 

energy efficiency in 3D wireless sensor networks [32], and 

optimize logistics routes in township settings [33]. These 

applications highlight the versatile and robust nature of 

genetic algorithms in solving a wide array of challenging 

optimization problems. 

 

Fig. 2 – GA algorithm process. 

The genetic algorithm is a procedure for optimization 

based on the mechanics of natural selection and natural 

genetics. It searches for solutions to complex problems by 

attempting to find an optimal or near-optimal solution 

through an evolutionary process. This consists of the 

following (Fig. 2):  

1. Initialization: It begins with an initial population of 

candidate solutions, usually created quite randomly. Each 

chromosome encodes a potential solution to the problem in 

some coded form, most often in binary-coded form. 

2. Fitness (Evaluation): The population of individuals is 

judged by their fitness with respect to the problem as 

measured by the appropriate fitness function. Selection has 

the consequence that 'good' solutions tend to survive, 

because individuals possessing better measures of fitness 

are more likely to be selected for reproduction. 

3. Crossover/Reproduction: The reproduction or 

mating procedure is responsible for establishing the way in 

which individuals are allowed to mate. The standard 

selection methods include roulette (proportional to fitness), 

tournament, or rank, where the best individuals are favored 

to move to the next generation. 

4. Crossover: Two selected parents exchange parts of 

their chromosomes to generate new offspring. Crossover 

(or recombination) introduces diversity into the population 

by combining the characteristics of both parents. Several 

crossover methods exist, such as single-point or multi-point 

crossover, or uniform crossover. 

5. Mutation: It is the random change applied to the 

genes of the offspring chromosomes after crossover. It 

includes random changes in one or more parts of the 

chromosome to explore new solutions and prevent the 

algorithm from converging to local optima. 

6. New Generation: The newly generated individuals, 

after selection, crossover, and mutation, will form a new 

generation. A cycle: With each new generation, better 

solutions in terms of survival are adapted. 

7. Termination Criterion: The evolutionary process is 

continued until a stopping criterion is met or a stopping 

point, for example, a predefined number of generations or 

when the solution reaches a desired performance threshold. 

The genetic algorithm constitutes a powerful method 

among metaheuristic methodologies used to search large-

scale solution spaces to find the optimal solutions for 

complex problems. The use of its evolutionary mechanisms, 

including selection, crossover, and mutation, allows it to 

navigate successfully through high-dimensional search 

spaces, typically with higher robustness than conventional 

optimization techniques. 

6. HIGH-GAIN GENETIC ALGORITHMS 

OPTIMIZATION OBSERVER  

The application of the GA for optimizing the observer gain 

parameter θ has proven highly effective, achieving fast 

convergence and near-zero estimation error. The GA 
successfully identified the optimal θ value, which is crucial 

for the high-gain observer's performance.  

In the simulations, the performance index was evaluated 

using the integral of time-weighted absolute error (ITAE), 

which emphasizes both rapid convergence and the 

minimization of long-lasting estimation errors. 

Figure 3 illustrates the best function achieved by the GA, 

demonstrating its effectiveness in determining this optimal 

parameter. In the system simulation using the high-gain 

observer with the optimal θ value of 3.290885556070827 (as 

calculated by the GA), superior results were obtained.  

Figures 4 and 5 show that with this optimal θ, the observer 

quickly converges to the actual state of the process while 

keeping the parameter low enough to provide accurate 

estimates for the variables CA and T. Figures 6 and 7 further 

demonstrate the minimal error between the real and estimated 

states for CA and T, respectively, confirming the high 

accuracy of the observer with the GA-optimized parameter. 

Compared to traditional methods for calculating observer 

gains, the GA-based optimization method not only offers 

superior accuracy and rapid convergence but also significantly 

reduces computational complexity and processing time. 

Overall, GA optimization demonstrates its efficiency in 

enhancing observer performance and optimizing gain 

parameters for precise state observation, thereby underscoring 

the advantages of artificial intelligence-based algorithms in 

modern control systems. 

Table 3 

Optimization algorithm parameter settings 

 GA 

Population size 50 

Generations  25 

Table 4 

Optimal Parameter 

Parameters Optimal parameter 

Theta parameter θ 3.290885556070827 
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Fig. 3 – Genetic Algorithm best function. 

 
Fig. 4 – The Evolution of the estimated and actual state variables T with 

GA optimization. 

 
Fig. 5 – The Evolution of the estimated and actual state variables CA with 

GA optimization. 

 
Fig. 6 – The Evolution of the error between estimated and actual state CA. 

 

Fig. 7 – The Evolution of the error between estimated and actual state T. 

7. CONCLUSIONS 

In conclusion, the potential of a high-gain observer with an 

optimally designed gain parameter, as determined by a 

genetic algorithm, has been demonstrated in this work. Taking 

advantage of the capability of the GA to search complex and 

nonlinear solution spaces, we were able to compute the 

optimal value of the gain (θ) that resulted in fast convergence 

and negligible estimation error in a nonlinear chemical reactor 

process. When compared to conventional observer tuning 

approaches, the proposed strategy offers significant 

improvements in robustness, estimation accuracy, and 

computational efficiency. 

The continuous stirred tank reactor (CSTR) was chosen as 

a representative nonlinear benchmark to test the observer 

design. The experiment verifies that adding AI-based 

optimization, specifically the application of a genetic 

algorithm, can improve performance on nonlinear observers 

without requiring extra sensors or model simplification. 

Future studies can involve the extension of this 

methodology to other reactor configurations like plug flow or 

semi-batch operations, and investigation of hybrid 

metaheuristic techniques with the combination of GAs with 

ant colony optimization or neural-based learning. 

Additionally, the incorporation of adaptive machine learning 

algorithms for online adjustment of observer parameters can 

also make autonomous, scalable, and innovative process 

monitoring and control a reality in the process industry. 
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