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ARTIFICIAL INTELLIGENCE FEATURES ON OBSERVATIONS OF
NONLINEAR CHEMICAL REACTOR DYNAMICAL PROCESS
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This paper proposes a novel approach for enhancing the optimization of nonlinear high-gain observers by utilizing a genetic
algorithm (GA) to improve state estimation precision in chemical reactors. Unlike traditional tuning methods, the GA optimally
seeks optimal observer gain parameters that yield a minimum estimation error and improve convergence rates. The new method is
used to benchmark a nonlinear continuous stirred-tank reactor (CSTR) model. The simulation outcomes validate that the GA-
optimized observer exhibits a substantially enhanced rate of convergence and accuracy in estimating the temperature and
concentration states compared to traditional methods. Additionally, the technique enables smaller dependence on physical sensors,
thus promoting stronger and less expensive monitoring and control systems. The approach introduced is model-independent and
applicable in real-time to an extensive class of engineering systems, including electrical and power systems. This work highlights the
practical benefits of integrating metaheuristic optimization and nonlinear observer design in industrial processes.

1. INTRODUCTION

Artificial Intelligence (AI), especially when combined
with machine learning and metaheuristic optimization, has
become a powerful enabler of advanced estimation and
control strategies for nonlinear dynamic systems. In the
context of the chemical process industries, Al-based
approaches significantly contribute to automating complex
tasks and enhancing system performance through intelligent
observer design and adaptive parameter tuning [1,2]. Recent
contributions have highlighted the potential of hybrid
metaheuristic algorithms integrated with deep learning to
enhance estimation accuracy and computational efficiency.
For example, Sumithra et al. [3] developed a dragonfly—
whale—lion optimized deep neural network for accurately
estimating software cost, effort, and time. In related work,
Babu et al. [4] proposed a modular neural network optimized
by the Cuckoo Search algorithm for effective fault
classification in wind turbines, demonstrating the adaptability
of such techniques to various nonlinear and dynamic
environments. One of the classic issues with chemical
reactors is the reliable estimation of internal states,
particularly in nonlinear systems where sensor constraints,
disturbances, and model uncertainty limit real-time
monitoring. High-gain observers (HGOs) have been among
the robust techniques employed for estimating unmeasured
states from dynamic models and output measurements
available [5—7]. They are based on gain amplification and are
used to enable fast convergence of errors under any noisy or
uncertain conditions. But the performance of an HGO is
susceptible to the selection of its gain parameter. An HGO
may converge very slowly or be very noise-sensitive if its
gain is not adequately set. Conventional tuning procedures
are often based on heuristic rules or even direct manual
tuning and may be inadequate for nonlinear and time-varying
operations. It is due to this reason that Artificial Intelligence
tools, specifically GAs, prove to be a suitable alternative for
automating gain selection [8,9]. GAs have been shown to
possess global search capability and stability in solving
challenging, non-convex optimization problems.

There has also been some recent research extending the
use of HGOs to more complicated and organized systems.
Ahmed-Ali et al. [10], for example, introduced an HGO-
based output feedback control of nonlinear partial
differential equation systems. Gerbet and Robenack [11]
designed a high-gain observer for polynomial dynamical
systems for embedded control. Mousavi and Guay [12]
proposed filtered multi-high-gain observer structures to
solve estimation for multiscaling multi-phase dynamics
systems. The contributions mentioned above indicate future
lines of research in HGO methods for various types of
systems. Our interest in this paper is in optimizing and
designing a high-gain observer for a nonlinear continuous
stirred tank reactor (CSTR). The CSTR is a highly tested
benchmark system in observation and control experiments
due to its nonlinear and robust dynamics, as well as its
sensitivity to reaction kinetics [13,14]. Our novel
contribution is adopting a GA to tune the observer gain
independently, enhancing the convergence rate and
accuracy of the estimated states (temperature and
concentration), even in uncertainty and disturbances.

Simulation experiments confirm the proposed approach
through the demonstration of enhanced estimation
performance over conventional methods. The observer also
substantiates ~ state  reconstruction  without  sensor
infrastructure, hence being deployable for real-time
implementations. The proposed framework is model-free
and deployable in multiple disciplines, including electrical,
energy, and environmental systems.

In addition to these developments, recent contributions
published in the Revue Roumaine des Sciences Techniques,
Série Electrotechnique et Energétique have emphasized the
integration of advanced control strategies with artificial
intelligence and optimization methods. For instance,
Roubache and Chaouch [15] investigated nonlinear fault-
tolerant control approaches for electric vehicle drives, while
Amrane et al. [16] proposed adaptive nonlinear control
schemes for variable-speed wind turbines. More recently,
Elumalai [17] investigated the application of neural
network-based controllers to enhance power quality and
tracking performance in renewable energy systems. A 2025
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study further advanced this trend by applying artificial
neural networks for pitch angle control in wind turbines
[18]. These works highlight the growing role of Al-driven
and observer-based techniques across different energy and
process domains, reinforcing their relevance for chemical
reactor state estimation and control.

2. CHEMICAL REACTOR PROCESS MODEL

A chemical reactor is a process vessel designed specially
to enable chemical reactions and is regarded as a unit
operation of basic importance in chemical process analysis
[13]. It is designed to create the optimal conditions for
chemical conversion, including sufficient temperature,
pressure, and proper mixing of the reactants. The design
and operation of a chemical reactor are dictated by
numerous factors, including the reaction type, the required
yield of the product, and safety considerations [14].

There are several types of reactors, including batch
reactors, plug-flow reactors (PFR), semi-batch reactors, and
continuous  stirred-tank reactors (CSTR) [19]. Batch
reactors are typically used at the laboratory scale for
measuring kinetics. In contrast, continuous reactors, such as
CSTRs, are commonly employed in industrial applications,
where reactants are fed continuously and products are
removed simultaneously [13].

Some recent research has investigated chemical reactor
performance from various perspectives. For instance, a
process safety time-based design hypothesis was proposed
for batch reactors [20]; multi-objective optimization
methods have been proposed for batch processes [21]; and
new control methods have been utilized in CSTR systems
[22]. Here, we emphasize the model CSTR due to its
extensive utilization in both environmental and chemical
engineering. Otherwise known as the mixed flow reactor
(MFR), back-mix reactor, or continuous-flow stirred-tank
reactor (CFSTR), the CSTR incorporates ideal mixing
conditions and thereby serves as a default reference point
for observer and controller validation [23]. Our research
aims to improve the estimation of unmonitored states, such
as concentration and temperature, which are crucial for
achieving optimal reactor performance and stability.
Because the CSTR is nonlinear and measurements are
constrained, we introduce an artificial intelligence-
optimized high-gain observer framework to provide precise
real-time state estimation despite disturbances and
uncertainty. Emerging technologies in reactor modeling and
regulation have also accentuated the need for accurate
estimation techniques. For example, [24] offers multi-
objective optimization of batch systems, while [25]
suggests an improved control strategy for CSTRs. These
technologies underpin the emerging trend towards model-
based and observer-based methodologies in chemical
process systems. In the next section, we introduce the
mathematical model of the CSTR employed in this research
as the basis for observer design and optimization.

Figure 1 illustrates the reactor structure and the
observation system, including the proposed observer. This
reactor is equipped with a double jacket through which a
coolant fluid circulates, allowing the reactor's contents to be
cooled.
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Fig. 1 — Schematic of a well-stirred continuous reactor (CSTR).

Table 1

Parameters
Variable/Parameter Notation Value
Feed flow rate q 100 1 /min
Feed concentration Car Imol/l
Feed temperature Tr 350K
Cooling temperature Ter 350K
Reactor volume 14 1001
Heat transfer coefticient h, 7%10° cal/min/K
Reaction rate constant K, 7.2%¥10%min~?!
Activation energy E/R regular
Heat of reaction AH -2*#10° cal/mol
Fluid densities P, P, 1¥103 g /1
Specific heats Cp Cye Ical /g/k

The equations of the system are generalized in the
following form [26]:

. _E
Ca = 2(Cag = Ca) = KoCpe s,

AHK,

n_a
T_V(Tf_T)_ PC,

ot (1)
CAe_R_ET + ifp"; qc <1 —e "CCMC> (Ter —T).

where Cj, the concentration of the product at the outlet of the
reactor, is the measured variable, g, is the control variable,
and Cj is the disturbance. The model stands for the operating
points C,= 0.06, 0.1, and 0.13. The following table gives the
results obtained for different values of C:

Table 2
Initial conditions.
€3 (mol/l) 0.06 0.1 0.13
Tk 449 47 438.54 432.92
g2 (/mn) 89.03 103.41 110.03

The dynamic process represented by:
A -E
G = %(CAf - CA) — KoCpe®T = fi,
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3. HIGH-GAIN OBSERVER DESIGN FOR
CONTROL AFFINE SYSTEMS

Consider the general nonlinear system described by:

x = f(x,u),
{ y =h(x)," 3)

where X € R™; yERP; ueR™; f:R*" XxR™ - R", and
h: R™ — RP are assumed to be smooth functions.

The transformed system appearing simpler, we will begin
by designing an observer for system (3). We first write system
(3) in a compact form for [27]:
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{2 =Az+¢Y(z) + <l>(z)u,. @

y = Cz,

where
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@ (24, -, Zy)
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Note that the nonlinearity ®(z) is said to be triangular.
In effect, an observer for (4) is given by:

Z=AZ+Y(2) + P(@)u+ kye(y — C2), )

where kg = Agk with Ag= diag (e TR ’ein) and 6 >0,

K is a matrix such that the matrix (A — KC)) is stable. Now,
we know that

_0P(x) .
T ax x=
6 X
29 (F(x) + g()w) ©)
=Az +Y(z) + P(2)u
and
Y = h(x) + h(®71(2)) = Cz. @)
On the other hand,
Z=@(X). ®)
That is,
A 00(R)
Z=—=%x )
and therefore
A __ 0071 4
. xr= ox z=
= % R)[AZ+P(2) + P(Z)u+ kg(y — C2)]= (11
o - a1 -
= f®) + g®u+Z— R (ko (y — h(R). (12)
Hence, in the original coordinates:
= f®) + g®u + 2P (kg (y - h(®).  (13)

and g(X) must be uniformly Lipschitz continuous.
A careful choice of the high-gain observer's design

parameter should ensure a balance between fast
convergence and robustness against measurement noise.

4. HIGH-GAIN OBSERVER SYNTHESIS OF
CHEMICAL REACTOR PROCESS AND RESULTS
DISCUSSION

The construction of a high-gain observer can be
synthesized in the coordinate space z. To obtain the
observer's equations in the original coordinates, it suffices
to multiply the gain vector in the new coordinates Ag'k by

AN:

Ci=t(-c)- 72x101°xCA><exp(—)

. 10*
— 12
T = —100(350 T) + 14.4 x 10 XCAXeXp< 7 >+

+&(1 —exp (%)) (350 —T),

100 (20)

v =Cy,andy, = T.

For the system under consideration, the observer's
equations in the original coordinates are detailed as
follows:

G=101

16! CA)—72><101°><CA><exp( )+Gk1(CA ()
T

5(350 ~T) + 144 % 102 x &y x exp (2F) +
100 (1 —exp( o )) (350 —T) +
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TZ
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(14)
The gain K is chosen equal to: K = ( ) (;8)

5. GENETIC ALGORITHMS OPTIMIZATION

A genetic algorithm (GA) is a sophisticated heuristic
optimization technique rooted in the principles of natural
selection and genetics. It leverages evolutionary processes,
such as selection, crossover, and mutation, to iteratively
refine a population of potential solutions to a given
problem. In GA, a diverse set of candidate solutions
evolves over multiple generations, with the fittest
individuals selected to pass their genetic material to future
generations. This iterative mechanism, driven by crossover
and mutation, generates new solutions aimed at achieving
the optimal or near-optimal solution [28]. Conceptually,
GA treats optimization problems like ecosystems, where
feasible solutions represent organisms within this
environment. These solutions are encoded using binary
strings or other symbolic formats from a predefined set. By
mimicking natural evolutionary processes, GAs efficiently
navigate complex, high-dimensional search spaces, often
outperforming traditional optimization methods in terms of
both robustness and solution quality [28].

The success of GAs in addressing complex problems is
widely recognized across various fields. For example, GAs
have been employed to enhance constrained learning path
adaptations [29], optimize parameters in the quantum
approximate optimization algorithm [30], solve flexible job
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shop scheduling issues using hybrid methods [31], improve
energy efficiency in 3D wireless sensor networks [32], and
optimize logistics routes in township settings [33]. These
applications highlight the versatile and robust nature of
genetic algorithms in solving a wide array of challenging
optimization problems.
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Fig. 2 — GA algorithm process.

The genetic algorithm is a procedure for optimization
based on the mechanics of natural selection and natural
genetics. It searches for solutions to complex problems by
attempting to find an optimal or near-optimal solution
through an evolutionary process. This consists of the
following (Fig. 2):

1. Initialization: It begins with an initial population of
candidate solutions, usually created quite randomly. Each
chromosome encodes a potential solution to the problem in
some coded form, most often in binary-coded form.

2. Fitness (Evaluation): The population of individuals is
judged by their fitness with respect to the problem as
measured by the appropriate fitness function. Selection has
the consequence that 'good' solutions tend to survive,
because individuals possessing better measures of fitness
are more likely to be selected for reproduction.

3. Crossover/Reproduction: The reproduction or
mating procedure is responsible for establishing the way in
which individuals are allowed to mate. The standard
selection methods include roulette (proportional to fitness),
tournament, or rank, where the best individuals are favored
to move to the next generation.

4. Crossover: Two selected parents exchange parts of
their chromosomes to generate new offspring. Crossover
(or recombination) introduces diversity into the population
by combining the characteristics of both parents. Several
crossover methods exist, such as single-point or multi-point
crossover, or uniform crossover.

5. Mutation: It is the random change applied to the
genes of the offspring chromosomes after crossover. It
includes random changes in one or more parts of the

chromosome to explore new solutions and prevent the
algorithm from converging to local optima.

6. New Generation: The newly generated individuals,
after selection, crossover, and mutation, will form a new
generation. A cycle: With each new generation, better
solutions in terms of survival are adapted.

7. Termination Criterion: The evolutionary process is
continued until a stopping criterion is met or a stopping
point, for example, a predefined number of generations or
when the solution reaches a desired performance threshold.

The genetic algorithm constitutes a powerful method
among metaheuristic methodologies used to search large-
scale solution spaces to find the optimal solutions for
complex problems. The use of its evolutionary mechanisms,
including selection, crossover, and mutation, allows it to
navigate successfully through high-dimensional search
spaces, typically with higher robustness than conventional
optimization techniques.

6. HIGH-GAIN GENETIC ALGORITHMS
OPTIMIZATION OBSERVER

The application of the GA for optimizing the observer gain
parameter 0 has proven highly effective, achieving fast
convergence and near-zero estimation error. The GA
successfully identified the optimal 6 value, which is crucial
for the high-gain observer's performance.

In the simulations, the performance index was evaluated
using the integral of time-weighted absolute error (ITAE),
which emphasizes both rapid convergence and the
minimization of long-lasting estimation errors.

Figure 3 illustrates the best function achieved by the GA,
demonstrating its effectiveness in determining this optimal
parameter. In the system simulation using the high-gain
observer with the optimal 6 value of 3.290885556070827 (as
calculated by the GA), superior results were obtained.

Figures 4 and 5 show that with this optimal 0, the observer
quickly converges to the actual state of the process while
keeping the parameter low enough to provide accurate
estimates for the variables CA and T. Figures 6 and 7 further
demonstrate the minimal error between the real and estimated
states for CA and T, respectively, confirming the high
accuracy of the observer with the GA-optimized parameter.
Compared to traditional methods for calculating observer
gains, the GA-based optimization method not only offers
superior accuracy and rapid convergence but also significantly
reduces computational complexity and processing time.
Overall, GA optimization demonstrates its efficiency in
enhancing observer performance and optimizing gain
parameters for precise state observation, thereby underscoring
the advantages of artificial intelligence-based algorithms in
modern control systems.

Table 3
Optimization algorithm parameter settings

GA

Population size 50

Generations 25

Table 4
Optimal Parameter

Parameters Optimal parameter

3.290885556070827

Theta parameter 6
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7. CONCLUSIONS

In conclusion, the potential of a high-gain observer with an
optimally designed gain parameter, as determined by a
genetic algorithm, has been demonstrated in this work. Taking
advantage of the capability of the GA to search complex and
nonlinear solution spaces, we were able to compute the
optimal value of the gain () that resulted in fast convergence
and negligible estimation error in a nonlinear chemical reactor
process. When compared to conventional observer tuning
approaches, the proposed strategy offers significant
improvements in robustness, estimation accuracy, and
computational efficiency.

The continuous stirred tank reactor (CSTR) was chosen as
a representative nonlinear benchmark to test the observer
design. The experiment verifies that adding Al-based
optimization, specifically the application of a genetic
algorithm, can improve performance on nonlinear observers
without requiring extra sensors or model simplification.

Future studies can involve the extension of this
methodology to other reactor configurations like plug flow or
semi-batch operations, and investigation of hybrid
metaheuristic techniques with the combination of GAs with
ant colony optimization or neural-based learning.
Additionally, the incorporation of adaptive machine learning
algorithms for online adjustment of observer parameters can
also make autonomous, scalable, and innovative process
monitoring and control a reality in the process industry.
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