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The production process of airbags demands near-zero defects, from raw materials to final assembly. To minimize fabric flaws, we 
conducted a study on the maintenance schedule of looms using a custom-designed vision system at a leading global manufacturer. 
We identified and classified all observable defects in the resulting fabric based on the proposed framework, which utilizes wavelet 
transform and supports high-speed processing. The results were correlated with loom maintenance and monitored over a two-
year period to reduce unforeseen errors. As a result, the company successfully rescheduled repairs, decreased defects, and 
minimized material loss. 

1. INTRODUCTION 
In the modern sense, quality is a complex, relative, and 

dynamic concept that encompasses technical, economic, 
aesthetic, and ergonomic requirements, whose content 
evolves in response to social needs and is measured by the 
value and economic efficiency provided by the product or 
activity. Quality is of primary importance in every aspect of 
a business. A good quality product is a product that meets the 
purpose for which it was created and satisfies a specific 
customer need. Therefore, quality control involves a 
systematic and regular examination of variables that impact 
the quality of a product. Conforming to the integrated 
management system, the zero defects strategy is based on the 
principles of "at the right place, with the right parts and the 
right process”, as well as continuous process improvement. 
Especially in the automotive industry, quality control 
services verify the quality of raw materials entering the 
manufacturing process, as well as the technological process 
operations, and the quality of both unfinished and finished 
products, by ISO/TS 16949 standards. 

In public transportation safety, besides the use of safety 
belts, the development of airbags has introduced another 
passenger protection system in the event of a car crash. The 
first airbags were made available around the 70s and were 
marketed under the following designations: supplemental 
restraint system (SRS) or supplemental inflatable restraint 
(SIR). Even if the first systems were quite unstable, the 
primary interest of car manufacturers has led to the 
development of an industry that has proven beyond a doubt to 
save passengers’ lives. The first car to utilize such equipment 
was the standard Porsche 944, introduced in 1987. 

The airbag can be seen as passive security equipment 
(because the human does not intervene in triggering), 
comprising a set of sensors, an electronic control unit, and a 
pyrotechnic cap that fills a fabric bag coated on one side with 
a silicone film with hot air. Triggering is performed 
considering several factors, including deceleration, impact, 
and speed. The electronic will deploy the safety car systems, 
the airbags, and/or the pre-tensioned seatbelts. To inflate the 
airbag, a pyrotechnic device called an initiator releases a gas 
at approximately 100 °C after several stages (20 to 40 ms) 
within the fabric bag. The quick inflation process ensures 
that the car passenger touches the surface of the cushion 
during the recession/deflation moment, produced by a small 
ventilation hole, and hits a soft surface as the effective speed 
of opening is approximately 300 km/h. These ventilation 
holes play a crucial functional role, as they regulate the 
amount of gas inside the cushion during a crash. It’s slow 

deflation produces the amortization of the passenger and the 
dissipation of collision energy. Airbags are designed to 
trigger at impacts with a force comparable to a wall crash at 
a speed of 13-23 km/h. This impact force is the equivalent of 
a front collision at the speed of 45 km/h to a parked car, as 
the deforming structure absorbs the shock. 

Few authors have explored the application of texture 
segmentation and recognition to the airbag weft, as in [1] or 
in a comprehensive textbook [2]. In this paper, textile defect 
detection is investigated using a bank of Gabor filters. 
Section 2 presents the process of airbag production, together 
with the tools used for weaving. In Section 3, a state-of-the-
art review of texture detection and recognition, with 
applications in the textile domain, is described. In section 4, 
the proposed framework for texture inspection and defect 
detection is introduced. Section 5 reports our experimental 
results, followed by conclusions. 

2. AIRBAG FABRIC PRODUCTION 
Weaving is one of the most critical stages in the 

manufacturing process of airbags. Therefore, the quality of 
fabrics must be higher and provide a low air permeability to 
prevent structural tears or hot gas leaks in the inflation 
process. The special type of threads employed here creates a 
low-weight, low-thickness, and high-strength fabric with the 
specifications outlined in Table 1. 

The weaving looms used are water jet TOYOTA LW 601 
type, with the following operational parameters: 

• Weaving width: 2.3 m; 
• Weaving speed: 40 m/ h; 
• Weave type: 1:1 plain 4 threads; 
• Water jet pressure: P = 2 bar; 
• Water temperature: T = 17±2°C. 

Looms are supplied with warp from a previous process 
operation, while the weft thread comes from a spool. The 
primary material is the fabric that serves as the airbag's 
structural component; in this case, the core material is a plain 
fabric made of 6.6 polyamide with a thin layer of silicon 
overlaid. Specifications include a 46x46 threads/inch density 
fabric, made with 470 dtex yarn count and comprising a total 
of 68 filaments, featuring an S twist. These threads are 
composed of 100% continuous Nylon 6 yarn of high tenacity, 
exhibiting excellent elastic recovery. At low stresses, they 
recover almost 100 %. 

Polyamide 6.6 is part of the group of synthetic fibers 
produced by melt spinning. Polyamide 6.6 materials are 
formed from adipic acid and hexamethylene diamine, and 
after a polycondensation reaction, the processes involve 
spinning and cooling to form Polyamide 6.6. 
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Table 1 
Airbag fabric properties. 

Fabric Characteristics Specification 
Weight 210-240 g/m2 

Thickness 0,27-0,35 mm 
Density 46 yarns/inch 

Air permeability ≤ 10 l/dm²/min 
Tenacity ≥ 500 N/cm 

Elongation ≥20 % 
Tear resistance ≥175 N 

 
Other properties of airbag polyamides include a moisture 

regain value of 5%, a relatively low melting temperature of 
215°C, and a softening temperature of 175 °C. Additionally, 
it exhibits excellent abrasion resistance and good tensile 
strength, but is sensitive to chemicals, light, and 
microorganisms. The atmospheric conditions (temperature 
and humidity) in which fibers are deposited have a 
significant influence on these fabric characteristics. 

 

 
Fig. 1 – The Toyota water jet loom used for airbag fabric. 

The silicone layer coating of the fabric will offer 
properties such as dimensional stability, low air 
permeability, and increased resistance to heat during airbag 
inflation at approximately 300 °C. This operation is quite 
complex, involving many parameters that could somehow 
deteriorate the fabric. The workflow comprises the drying of 
the raw material, vacuuming of the fabric, the coating with 
several components: an elastomer, a silicone rubber, a 
pigment, and the final drying in a series of ovens. Then, the 
material follows the technological flow and gets to the 
cutting stage, after which all parts of the product are 
assembled using sewing threads. 

3. IMAGE PROCESSING FOR TEXTILE DEFECT 
DETECTION 

The textile industry has the lowest rate of automation; 
therefore, in recent years, considerable research and 
development efforts have been made in this direction. Image 
processing was one of the first techniques that was applied to 
various stages of the production process. Existing resources [3] 
have developed a high-speed algorithm for defect detection in 
textiles based on estimating the fractal dimension and a simple 
box-counting method. Chan and Pang [4] have presented a 
method based on the analysis of discrete Fourier transforms, 

classifying defects into four types: double yarn, missing yarn, 
webs or broken fabric, and yarn density variation. Other 
authors [5,6,21] have detected defects in randomly textured 
surfaces that arise in sandpaper, castings, leather, and many 
industrial materials using an image reconstruction scheme from 
the Fourier transform.  

Nevertheless, Gabor filters are a fast and reliable method of 
highlighting flaws in textured materials. After applying the 
filter, several post-processing and segmentation phases are 
required to isolate and identify the actual defects. Examples of 
such processes are given in [7,8]. 

An essential property of the wavelet transform is the shift 
invariance, which means it can be used to investigate fabric 
images at different scales. Analyzing defects based on 1-D 
wavelet transformations applied on the horizontal and vertical 
projection signals can lead to a final classification approach 
with various techniques [9]. The authors in [10] further 
developed the idea of using the Karhunen-Loeve transform to 
process texture images and a Markov random field as a 
discriminative classifier.  

More up-to-date papers are balancing the use of pattern 
extraction and recognition methods [11], combined feature 
classification by random forest [10], or deep learning with the 
“all-purpose” convolutional neural networks [12,13]. In the 
paper by [14], the authors introduce AC-YOLOv5, a novel 
method for textile defect detection designed to overcome the 
challenges posed by complex textures, varied defect sizes, and 
target diversity. By integrating the ASPP module for multiscale 
feature extraction and the CSE attention module for enhanced 
defect detection, it significantly improves accuracy and 
stability. Tested on a real-world dataset, AC-YOLOv5 
achieved an impressive 99.1 % detection accuracy, meeting the 
needs of industrial applications. 

Using deep learning with long short-term memory, textile 
defect detection and texture classification become highly 
efficient, replacing traditional manual inspections. In paper 
[15], the process implemented analyzes digital images to 
identify fabric defects, even in complex patterns, with faster 
computation. The approach involves RGB image conversion, 
threshold comparison, and unsupervised learning for defect 
percentage classification, utilizing multi-scale curvelet 
decomposition to enhance pattern recognition and defect 
detection while reducing computational time.   

Buoy capsules, made from composite materials, present 
challenges for defect detection due to material anisotropy. The 
paper in [16] introduces a data-driven method for defect 
detection using stress wave measurements. By analyzing strain 
signals with VMD and utilizing a GenSVM model for defect 
recognition, the approach demonstrates effective detection and 
health management of the capsule.   

The review paper [17] discusses the application of computer 
vision and digital image processing in fabric defect detection, 
a crucial task in the textile industry. The article reviews various 
computer vision-based methods, including histogram, color, 
image segmentation, dictionary learning, texture analysis, 
frequency domain operations, gray-level co-occurrence matrix, 
feature fusion, sparse methods, morphology, and deep learning, 
highlighting their effectiveness in addressing these limitations. 
Additionally, it evaluates performance criteria for automatic 
defect detection, explores limitations of current research, and 
suggests future directions for improvement. 

The study in paper [18] proposes a fabric defect detection 
model using a cascade R-CNN to address challenges in 
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automatic fabric defect detection and eliminate the deficiencies 
of detection algorithms based on convolutional neural 
networks. The model incorporates block recognition, detection 
box merging, and switchable atrous convolution layers to 
enhance feature extraction. Experimental results demonstrate 
the model's effectiveness in accurately detecting fabric defects, 
tiny ones, in high-resolution images. 

The authors of [19] introduce a texture defect detection 
(TDD) algorithm that utilizes pre-processing to extract the 
luminance plane, wavelet decomposition to split the image into 
multiple sub-bands of the exact resolution as the original, and 
statistical features with support vector machines. The TDD 
method achieves 96.56% accuracy in detecting fabric defects, 
with real-time validation showing 97% accuracy.  

The improved, faster R-CNN deep learning algorithm 
proposed in the paper [20] integrates an E-FPN (enhanced 
feature pyramid network) for better multi-scale feature 

extraction, replaces the ROI (Region of Interest) Pool with ROI 
Align to improve segmentation and small target detection, and 
uses a Light Head to accelerate network performance. An 
average precision of 97.2 % and a detection time of 23.73 ms 
are the metrics achieved by the enhanced algorithm, which 
significantly outperforms the original method in both accuracy 
and practicality. 

4. A NOVEL SYSTEM FOR ON-LOOM DEFECT 
DETECTION 

We propose a novel algorithm, as illustrated in Fig. 2, 
which outlines the processing stages and data block flow. 
Some supplementary details and required optimizations for 
real-time processing, along with the blocks, will be described 
individually further. 

 

 
Fig. 2 – Data flow block schema. 

 
 

     
a)    b)    c) 

Fig. 3 – Image acquisition a) without defects; b) stain defect; c) thick yarn defect. 
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a)    b)    c) 

Fig. 4 – Resulting images after Gabor filtering; a) without any defects; b) with stain defect; c) thick yarn defect. 

 
The test images presented are cropped from 5M pixel 

acquisitions. The Dispatcher Block manages the acquisition 
of the images; the trigger is a timer or the condition when the 
accumulator finished collecting the last iteration's results. 
The cameras are configured before each acquisition with the 
camera specific exposure time. After collecting the images 
from all the cameras, it starts the execution units in parallel. 
The region of interest block cuts out the parts of the image 
which are either borders, region of fabric or undesired 
background which isn't part of the fabric (like a component 
of the loom). The ROI manually configured for each camera 
individually. 

The Gabor filter block applies a Gabor filtering to the ROI. 
It first generates a filter with the settings specified in the 
camera configuration, which are the following: filter size, 
wavelength, orientation, phase and bandwidth. Afterwards, a 
convolution with the original image is applied and histogram 
equalization transposes the results back into 8 bit grayscale 
values. 

The formulas for the filter are presented in equation (1), 
where λ denotes the wavelength, θ mean orientation 
(radians), φ denotes the initial phase, γ denotes the aspect 
ratio (how elliptic is the shape), b denotes the bandwidth and 
σ represents the standard deviation of the Gaussian factor. 
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One important criterion in deciding the filter size was the 

execution time, which was limited. The values that fit the 
texture best were chosen empirically as follows: block size 
18px, wavelength 15, orientation 0 or pi/2, phase pi/2, 
bandwidth 2, aspect ratio 1.7. Smaller sizes for the blocks 
generate more noise and false detections. 

The sinus filter block handles the offsetting of the de-
phasing response of the Gabor filtering if a defect is 
encountered. It constructs a sinusoidal filter of the same size 
as the Gabor filter and applies a convolution with the image, 
followed by histogram equalization. There are two Gabor 
and Sinus filter blocks in each execution unit, since the first 
deals with the horizontal orientation and the second with 
positioned along the fabric lines. 

The extreme mask block has the role of extracting regions 
out of the processed images. The parameters for masking are 
the lower bound and the upper bound of grey intensity. The 
image is parsed and all regions obeying the boundaries rules 
are extracted. The size decision cuts out regions smaller than 
an input minimum size. The remaining regions cover a larger 
area of the de-phasing Gabor filter and presume as being part 
of a defect. 

The stain decision averages the grey intensity of the pixels 
in the defect region, taken from the original image. If this 
average falls beneath the input threshold, the region is 
classified as a fabric stain. Otherwise, it is classified as a 
fabric defect. The accumulator block collects the classified 
regions from all the cameras, assembles the acquired images 
from the dispatcher with metadata from the regions and 
displays the results. If configured, an XML file will be 
outputted to the disk along with the image, containing the 
region metadata. 

 

     
a)    b)    c) 

Fig. 5 – Result images after both Gabor and sinus filter; a) without any defects; b) stain defect; c) thick yarn defect. 
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a)    b)    c) 

Fig. 6 – Segmented images: a) without defects; b) stain defect; c) thick yarn defect. 

 
5. RESULTS 

Several tests were conducted to validate the results. In this 
case, all images were saved and individually tested by a 
human operator to count the number of false positive cases. 
We performed supervised validation on two different days, 
spanning a period of approximately eight and ½ hours. The 
6-in-a-row camera acquired a total of 19.687 images. From 
this total, the system has selected 189 as containing defects, 
corresponding to 0.96 percent. Two types of defects were 
detected: oil stains and thick yarns. In the first case, even if 

the system has responded in the absence of the trained 
texture, this situation is not considered as a potential defect 
by the quality control, as it doesn’t affect the functionality of 
the weft, and the appearance is not essential. However, we 
have also checked the performance of the proposed system 
and identified 10 false negative situations out of a total of 
175 detected stains. 

In the case of thick yarns, a total of 30 cases were 
classified; among them, the human operator reduced the 
number of actual defects by half, as 14 false positives were 
saved, resulting in a defect percentage of 0.081. 

 
Fig. 7 – Categories of defects detected over 19687 test images. 

    
a)     b) 

Fig. 8 – Defects acquired images. a) thick yarn, b) stain. 
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6. CONCLUSIONS 
The production of airbags is a highly critical and sensitive 

process that demands an almost zero-defect output, as the 
reliability of airbags is directly tied to vehicle safety and 
human lives. The precision required in this process extends 
from the quality of the raw materials, such as the high-
strength fabrics, to the final assembly. Any defects in the 
material can compromise the airbag's functionality, which is 
why monitoring and minimizing flaws throughout 
production is essential. 

To address the challenge of fabric defects, we conducted a 
detailed study focusing on the maintenance schedules of the 
looms used to weave the airbag material. A key aspect of our 
approach was the development and deployment of a custom-
designed vision system at one of the world’s leading global 
manufacturers. Based on advanced image processing 
techniques using the Gabor wavelet transform, this system was 
specifically designed for high-speed operation. It allowed for 
real-time inspection of the fabric as it was produced, at a speed 
of 40 m/h and with a resolution of 0.25 mm. 

The system can analyze visual patterns by utilizing the 
wavelet transform, making it highly effective in detecting 
various fabric defects. These included observable issues such 
as broken or misaligned threads, irregularities in the weave 
pattern, and stains, all of which could compromise the 
integrity of the airbag material. 

Over two years, the system continuously monitored and 
classified these defects, producing a rich dataset that correlated 
with the looms' maintenance records. This analysis revealed a 
clear relationship between loom maintenance schedules and 
the occurrence of fabric flaws. By identifying patterns in the 
timing and nature of these defects, we were able to recommend 
optimized maintenance schedules tailored to the actual wear 
and performance of the looms. 

As a result, the manufacturer was able to reschedule loom 
repairs more proactively, significantly reducing the number 
of defects and the associated material wastage. This not only 
enhanced the overall quality of the airbag fabric but also 
reduced production costs by minimizing downtime and 
material loss due to defective output. The proposed 
framework thus provided a practical solution that improved 
both the efficiency and the safety outcomes of the airbag 
production process. 
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