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THE MONTE CARLO METHOD IN NON-HOMOGENEOUS MEDIA 
FOR EVALUATING THE RISK OF EXPLOSION IN TANKS  
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The paper presents an application of the Monte Carlo method to a model of a parallel-plane non-homogeneous medium 
corresponding to a parallelepiped tank. We derive the expressions for the primary and secondary statistical estimators. The 
network is considered rectangular, and the non-homogeneous media have the separation surface parallel to the coordinate axes. 
Based on these principles, we have calculated the electrostatic field at the air-gasoline separation surface and evaluated the risk of 
explosion based on the electric charge state of the gasoline. 

1. INTRODUCTION 
When an insulating liquid with electrical resistivity 

between 107 Ωm and 1014 Ωm passes through a pipe, it 
becomes electrostatically charged. The electric charge is 
positive if the pipe is metallic. If the pipe is made of 
dielectric material, the rule [1] is that the medium with higher 
permittivity gains positive charge. The phenomenon of 
electrostatic charging is more pronounced in the case of 
flammable liquids with superior characteristics, such as 
gasoline. This accumulation of charge can have dire 
consequences. 

Thus, when loading road tankers or railway tank wagons 
isolated from the ground [2], their walls can reach a 
dangerous potential. If the electrostatic field created by the 
voltage between the metal walls and the ground exceeds the 
value of 30 kV/cm, the risk of explosion is imminent.  

Another problem caused by the charging of gasoline 
flowing through pipes occurs when filling a tank without a 
floating lid. The charged liquid causes an electrostatic field 
to appear in the empty space above the gasoline, which, if it 
exceeds the critical value, can lead to an explosion, also 
favored by the flammable vapors present in that area. The 
floating lid, which has recently been equipped on tanks, 
solves the problem, but there can still be risks related to the 
appearance of foreign bodies floating on the surface of the 
gasoline or the deterioration of the grounding system of the 
movable lid. Of course, the risk of explosion only appears in 
the air zone of the tank; inside the gasoline, the electrostatic 
field can be as large as possible, but the lack of oxygen 
makes the appearance of a triggering spark impossible. 

In this paper we will deal with the case of a rectangular 
tank buried in the ground, with a fixed lid. The volume 
density of the charge inside the gasoline will be considered 
constant [3]. We will work with the value of the electric 
charge density ρv= 10-5 C/m3 [1]. Considering the direct 
proportionality of the electrostatic field with the volume 
density of the electric charge, the interpretation of the results 
will be easy for other values of this density. Given the large 
dimensions of the parallelepiped tanks used in practice (for 
example, in the Port of Constanța, there are tanks with 
dimensions on the order of tens of meters), the problem can 
be considered as parallel plane. 

2. A GENERAL OUTLINE OF THE PROBLEM 
The tank we have analyzed is 4 meters wide, 10 meters 

high, 20 meters long and is filled with gasoline up to a height 
of 8 m. Considering the parallel plane problem, the domain 
will consist of a rectangle with a base OB = 4 m and height 

OM = 10 m, filled with gasoline up to the height OA = 8 m, as 
shown in Fig.1. Using conventional numerical methods in 
such cases [4,5] involves determining the potential (field) at 
each point in the domain. For example, the finite difference 
method with an acceptable step of 5 cm would lead to 16,000 
points within the domain [6].  

The Monte Carlo method has the advantage that it suffices 
to determine the values of the potential for points within a 
specific area of interest from the inside of the tank [7]. To 
have a basis for verifying the results obtained with the 
proposed method, we chose an identical model to that in [9], 
Fig.1, where the problem was approached with a hybrid, 
analytic-numerical method. 

 
We remark than on the domain occupied by air within the 

tank, on the height AM = 2 m the electrostatic field equations 
lead to a Laplace equation:  
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In the domain occupied by gasoline the electrostatic field 
equations lead to a Poisson equation: 
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By applying the separation of variables method, we obtain 
the potential for the air region [9]:  
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and for the gasoline region: 
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Fig. 1 – A section through the petrol tank. 
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Here h = OA represents the height of the gasoline inside 
the tank. The axis Oy is the perpendicular bisector of the line 
segment [OB] in Fig.1 

Expressions (3) and (4) were obtained in [9] after partially 
using the conditions of the problem. A purely analytic 
solution was intractable beyond the relations found, so the 
authors had to rely on a numerical/analytic method.   

3. MATHEMATICAL FOUNDATIONS OF THE 
MONTE CARLO METHOD FOR NON-

HOMOGENEOUS MEDIA 
For a clearer presentation of the method, we will 

succinctly illustrate the steps leading to the general formula 
that characterizes the calculation of the potential in non-
homogeneous environments using the Monte Carlo method. 

Here the potentials of the points R, A1, A2, A3 and A4 are 
Vi,j, Vi+1.j, Vi,j+1, Vi-1j and respectively Vi+1,j, with RA1 = h1, 
RA2 = h2, RA3 = h3 and RA4 = h4. 

We write the Taylor series expansion for each of the 4 
points adjacent to (i,j), Fig.2, keeping only the first three 
terms. We eliminate the first derivative of the potential and 
then use it (2). We then obtain the numerical finite difference 
form of the Poisson equation with distinct discretization 
steps on all directions for homogeneous medium. 
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To transition from the formula (5) valid in a homogeneous 
medium to one that is valid in a non-homogeneous medium 
(Fig.3), an interesting trick is used [10,11]. We write a 
formula of type (5) for the point (i,j+1) with (ε1 and ρ1) and 
then for the point (i,j-1) with (ε2 and ρ2) if the point (i,j) lies 
at the same distance y from the two points considered. The 
distance between (i,j+1) and (i,j+2) is h2 and between (i,j-1) 
and (i,j-2) it is h4. We then make y go to 0. Then the points 
(i,j+1) and (i,j-1) turn into (i,j) the point (i,j+2) becomes the 
new (i,j+1) and the point (i,j-2) becomes the new (i,j-1). The 
points (i-1,j+1) and (i-1,j-1) both turn into (i-1,j) and the 
points (i+1,j+1) and (i+1,j-1) turn into (i+1,j). 

Thus, the finite difference numerical form of Poisson’s 
equation is obtained for a discretization grid with unequal 

steps, for a point located on the horizontal separation surface 
of a non-homogeneous medium charged with different 
charge densities (Fig. 3) 
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If the separation surface were vertical (which is not the 
case in the practical situation for which we are preparing to 
apply the method) with the medium with ε1 and ρ1 on the left 
and the medium with ε2 and ρ2 on the right, the numerical 
form of Poisson’s equation would be obtained by rotating the 
drawing in Fig. 3 by a right angle around the point (i,j) in a 
counterclockwise direction.  

Consequently, in relation (6), the quantities h1, h2, h3, h4 will 
be replaced respectively with h4, h1, h2, h3 and the quantities 
Vi-1,j, Vi,j-1, Vi+1,j, Vi,j+1 will be replaced with Vi,j+1, Vi-1,j, Vi,j-1, 
Vi+1,j. In the case of a rectangular grid with invariant steps in 
the direction of the coordinate axes, we have h1 = h3 = hx and 
respectively h2 = h4 = hy. In this case, relation (6) becomes  
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Thus eq. (7) is written as: 
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In our application, we will consider the discretization grid 
to be square, i.e., hx = hy = h, so in relation (8) we will take 
m = n = 1 and p = h2/4.  
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Fig. 2 – Model for Poisson numerical equation in homogeneous media. 
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Fig. 3 – Model for Poisson numerical equation in inhomogeneous 
media. 
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The volume density of the electric charge in medium (1), 
i.e., in air, is obviously ρ1 = 0, while the volume density of the 
electric charge in medium (2), i.e., in gasoline, is ρ2 = ρv = ρ. 
The electric permittivity in air is ε1 = ε0, while in medium 
gasoline, it is ε2 = εrε0 = 2ε0, with the relative permittivity of 
gasoline being known, εr = 2. With these particularizations of 
relation (8), the finite difference expression of the potential at 
a point on the horizontal separation surface between medium 
(1), air, obviously above, and medium (2), gasoline, is: 
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For the point (i,j) in the homogeneous medium (1), air, we 
get by particularizing equation (5): 
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For the point (i,j) in the homogeneous medium (2), 
gasoline, we get by particularizing eq. (5): 

𝑉*,, =
-
0
3𝑉*1-,, + 𝑉*,,1- + 𝑉*2-,,+𝑉*,,2-5 +

ℎ"

0
ρ
/ε%

. (11) 

Relations (9), (10), (11) will be interpreted 
probabilistically in the spirit of the Monte Carlo method. A 
fictitious particle is considered, which starts from point (i,j) 
and reaches one of the adjacent points (i+1,j), (i,j+1), (i-1,j), 
(i,j-1) with equal probability (1/4).  

Depending on the adjacent point where the fictitious 
particle arrives, a certain value is assigned to the potential of 
point (i,j), as follows:  

If the fictitious particle reaches point (i+1,j), i.e., moves to 
the right 

Vi,j=Vi+1,j + Ti,j. .(12) 

If the fictitious particle reaches point (i,j+1), i.e., moves 
up 

Vi,j=qVi,j+1 + Ti,j,, (13) 

where q = 2/3 if point (i,j) is on the separation surface and q = 
1 otherwise.  

If the fictitious particle reaches point (i-1,j), i.e., moves to 
the left 

Vi,j=Vi-1,j + Ti,j. (14) 

If the fictitious particle reaches point (i,j-1), i.e., moves 
down 

Vi,j=qVi,j-1 + Ti,j,, (15) 

where q = 4/3 if point (i,j) is on the separation surface and q = 
1 otherwise. Ti,j=0 if the point (i,j) is in medium (1), i.e., air, 
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If the point (i,j) is on the separation surface, 
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0
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If the point (i,j) is in medium (2), i.e., gasoline. 
The movement of the fictitious particle can be simulated 

on a computer by generating pseudo-random numbers 
(0,1,2,3) with the ‘random 4’ variant, thus commanding the 
direction of movement of the fictitious particle to the right, 
up, left, or down. The primary statistical estimator 
corresponding to the Monte Carlo method is determined. A 

square discretization grid with step h is attached to the cross-
sectional surface of the parallelepiped tank represented in 
Fig. 1. A random path TrK is considered, starting from point 
(i,j) where the potential is of interest and ending at a point on 
the boundary Γ of the domain, which in this case is 
represented by the sides of the rectangle.  

By successively expressing the potentials reached by the 
fictitious particle and successively eliminating these 
potentials with relations of the form (9)-(11), the starting 
potential Vi,j is expressed as a function of the potential of the 
endpoint of the path and the sources in the domain. It is 
observed that since the tank is buried, the potential on the 
contour Γ of the domain is zero, so the potential at the 
starting point will depend only on the sources in the domain. 

Thus in air we have 𝑉*,, = 𝑉*,,±-or 𝑉*,, = 𝑉*±-,, 	and in 
gasoline 𝑉*,, = 𝑉*,,±- + 𝑄 or 𝑉*,, = 𝑉*±-,, + 𝑄, while on the 
separation surface 

𝑉*,, = 𝑉*±-,, + 𝑃, 
𝑉*,, =
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.
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We denote by S(a,b) the source corresponding to the point 
(a,b), so S(a,b) = 0 in air, S(a,b) = Q in gasoline and S(a,b) = P 
for the separation surface. 

We deduce the expression for the primary statistic 
estimator of the random path TrK [11]: 
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where γ(a,b) represents the number of transitions of the 
fictitious particle from the separation surface to the domain 
occupied by gasoline, and δ(a,b) represents the number of 
transitions of the fictitious particle from the separation 
surface to the domain occupied by air.  

These transitions are counted from the moment the 
particle starts until the fictitious particle reaches point (a,b). 
The last point of the path TrK, for which the source S(a,b) is 
still considered, is the penultimate point of the path, with the 
last point being on the boundary. The potential of the 
penultimate point on the path will be the potential of the 
point on the boundary, which is zero.  

The improved secondary statistical estimator is the 
arithmetic mean of the primary statistical estimators, 
averaged over a very large number N of random paths. 
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?
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This is the value corresponding to the potential at point 
(i,j) using the Monte Carlo method. 

4. NUMERICAL RESULTS  
The Oy axis is taken as in Fig. 1, and the abscissa axis is 

taken right on the separation surface between gasoline and 
air, meaning the origin of the axes becomes the point A 
(Fig.1). The discretization grid step is taken as h = 5 cm on 
both axes. Thus, on the abscissa we will have 80 points, and 
on the ordinate, we will have 200 points, of which 40 are in 
the air.  

We apply the Monte Carlo Method to find the potential 
V1,1, V2,1, V3,1,...,V40,1 of the points in the air immediately 
above the separation surface, as well as V1,0, V2,0, V3,0,...V40,0 
of the points on the separation surface. We note that the 
symmetry of the problem has been considered and only the 
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potentials of the points in the left half of the section have 
been calculated.  

Each of these points will be starting points for N = 5000 
random paths.  

The electric field at the surface of separation has two 
components Exk,0 and Eyk,0, so we calculate 
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for k = 1,2,3...40. 
The numerical results obtained for the potential at the 

separation surface for the first 3 points on the separation 
surface and for the last three points located in the middle of 
the section are: V1,0 = 16.99 kV, V2,0 = 36.56 kV, V3,0 = 
59.89 kV, V38,0 = 333.32 kV, V39,0 = 365.93 kV, V40,0 = 
390.65 kV. 

The calculated values of the electric field at the points on 
the separation surface of the section are: E1 = 3.39 kV/cm, 
E2 = 3.9, kV/cm, E3=5.23 kV/cm, E39=35.91 kV/cm, E40 = 
37.80 kV/cm. 

At these values, the dielectric strength of air at 30 kV/cm 
is exceeded, and an explosion occurs. 

Considering the direct proportionality between the electric 
field and the volume density of the electric charge, we 
deduce that for the given configuration, the risk of explosion 
starts at the value of 0.79 x 10-5 C/m3 of the volume density 
of the electric charge in the tank. 

The electric fields corresponding to the points on the 
separation surface in the left half of the section form the 
following angles with the left-oriented abscissa axis: α1 = 
2.03 deg. α2 = 11.84 deg. α3 = 26.95 deg., α39 = 79.52 deg. 
and for reasons of symmetry α40 = 90 deg. It should be noted 
that at the coordinate point (40,0), the electric field has two 
components on the abscissa axis that are equal and opposite, 
so at this point, the electric field has only a vertical component. 

For comparison, the analytic method [9] yields similar 
results, for example the field E40 = 38.92 kV/cm. 

Let us recall another aspect of the Monte Carlo method. 
Each time the program is rerun, the results are different, but 
the differences do not exceed 5%. Another specific aspect of 
the method refers to the number of random paths. From the 
results obtained for N = 5000, N = 10000, N = 50000 and N = 
100000 we notice that the differences are not significant, so 
we chose to work with N = 5000. The convergence of the 
Monte Carlo method [8] is typical for random methods. 

All the data used in the paper was obtained by means of a 
C++ script. 

The use of the Monte Carlo method, supported by the 
finite difference method (including the corresponding 

discretization grid) was preferred to other numerical methods 
(such as FEM) for two reasons. The first has to do with the 
specificity of the field of interest, while the second is of 
theoretical nature, considering that the Monte Carlo method 
for inhomogeneous media is very little known and used. 

5. CONCLUSIONS 
There are situations, such as the one considered in this 

paper, where a method that provides the solution only in a 
certain part of the domain is preferable to classical methods 
of numerical calculation of the electrostatic field. The non-
homogeneous medium adds an extra layer of difficulty, 
particularly in the implementation of the program. Being a 
method derived from the finite difference method, Monte 
Carlo provides acceptable results, as demonstrated in this 
paper. For the configuration used to exemplify the method, 
the calculation of the maximum electric field in the air allows 
the determination of the charge loading from which the 
danger of explosion begins. 
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