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Deep learning (DL)-based protection algorithms for power transmission lines require large volumes of operational data for 
accurate training. However, such data is often complex to access due to confidentiality, restrictions, and proprietary limitations. 
This paper proposes a synthetic data generation method that combines principal component analysis (PCA) with a conditional 
tabular generative adversarial network (CTGAN). PCA reduces the dimensionality of high-frequency time-series data, allowing 
CTGAN to operate efficiently while retaining essential statistical characteristics. The generated synthetic data shows strong 
correlation with real data and effectively augments limited datasets. Validation using an LSTM-based fault classification model 
demonstrated an improvement from 50.93% to 86.07% accuracy. Additional validation using sub-synchronous oscillation data 
demonstrates broader applicability. The proposed method is scalable and supports DL training in data-scarce scenarios. 
 

1. INTRODUCTION 
Power transmission lines are vital elements of power 

systems responsible for transmitting bulk energy from power 
sources to consumers. However, owing to their constructional 
design and extensive geographical coverage, these 
transmission lines are persistently exposed to the risk of faults, 
which in turn can have significant operational and economic 
implications [1]. The timely and accurate detection of these 
faults holds utmost importance to prevent their potentially 
disastrous effects and minimize resultant damages.  Therefore, 
several fault detection techniques are proposed in the literature 
[2]. Recently, Artificial Intelligence (AI), which encompasses 
Machine Learning (ML) and Deep Learning (DL), has 
garnered significant interest for designing protection 
algorithms due to its strong pattern recognition capabilities. 
Several ML/DL based fault detection algorithms are reported 
in the literature with superior accuracy [3]. However, 
designing ML/DL algorithms requires an extensive volume of 
training data. Availability of a comprehensive dataset for 
training the ML/DL algorithm is a challenging undertaking. 
Therefore, this paper attempts to introduce an effective 
method for generating synthetic data, which can supplement 
the training process of the ML/DL model with actual data. 

ML/DL is a combination of computer hardware and 
software arrangement that utilizes a training dataset to learn 
an objective [4], generally with backpropagation (BP), and 
can be deployed for real-world tasks [5]. The utilization of 
AI for fault diagnosis is documented in the literature after the 
emergence of the artificial neural network (ANN) [3]. 
Typically, a training dataset with annotated outputs is 
employed to optimize the node weights via the back-
propagation algorithm, a technique known as supervised 
learning [6], which stands as the prevailing method  

The recent trend in AI is to use DL for designing fault 
detection algorithms. DL is a sub-branch of ML [7], which 
utilizes the intrinsic patterns in raw data for discovering the 
representations needed for detection or classification tasks 
[8]. Traditional ML involves designing a feature extractor, 
and the features are used for pattern recognition in data [9]. 
DL has integrated the feature learning and decision making 
into a single algorithm through multiple processing layers 
[10], most of which can learn non-linear input-output 

mappings. The modules in the stack modify their input to 
enhance the specificity and consistency of the representation. 
By having numerous non-linear layers, ranging from 5 to 20 
layers deep, the system can execute complex functions of its 
inputs that are highly responsive to subtle details while 
remaining unresponsive to significant, irrelevant changes, 
such as environmental factors, position, illumination, and 
surrounding objects [8]. Most popular DL architectures 
include convolutional neural networks (CNN), long short-
term memory (LSTM) units, etc. [10].  

Several DL studies have been reported in the literature that 
utilize deep models for transmission line fault diagnostics. A 
DL architecture utilizing capsule networks (CN) for fault 
identification in EHV transmission lines was proposed in [11]. 
The model has achieved a notable accuracy of 99.7%. 
However, the training process requires 38,115 examples. 
Similarly, another CNN-based study [12] utilized a CNN with 
self-attention, which requires a training dataset of 228,690 
examples. [13] used a transfer learning approach with CNN, 
which allows relatively less training time and data, i.e., 25000 
examples of faults. [14] utilized LSTM for featureless robust 
fault detection; this method is trained on 27,000 training 
examples. All these methods have strong performance, but 
they are trained using simulated datasets; therefore, getting 
such a large volume of training data was not a problem. 
However, if the training is to be performed on real telemetry 
data, obtaining such a large volume of data with equal 
contribution of each shunt fault is challenging. The availability 
and accessibility of transmission line data pose significant 
challenges since it is often sensitive and proprietary [15]. 
Therefore, in this paper, we attempt to introduce a first-of-its-
kind synthetic data generation method that produces synthetic 
data with a strong correlation to the original data and can 
augment the training process alongside real data. 

In the context of the literature review, this paper proposes 
a computationally friendly synthetic data generation method 
that can produce look-alike copies of the real data using a 
hybrid of principal component analysis (PCA) and 
conditional tabular generative adversarial network 
(CTGAN) introduced in [16]. CTGAN, by design, does not 
model temporal dependencies inherent in time series data. 
However, applying PCA to high-resolution time series data 
can compress temporal patterns into a lower-dimensional 
representation that retains key statistical features. CTGAN 
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can then generate synthetic data in this reduced space. This 
reduces the computational overhead of CTGAN. The 
generated data can help train DL models with limited real 
data. The key contributions of this work lie in the use of 
synthetic data to support DL applications in power system 
fault diagnosis, particularly when access to real telemetry 
data is limited. While synthetic data generation has been 
explored in other fields, its application to power system 
operational data, especially for training fault classification 
models, is limited. Most prior studies rely on simulated data, 
whereas this work focuses on generating synthetic data that 
statistically mimics actual telemetry data.  

Furthermore, to address the computational burden 
associated with generating high-resolution time-series data 
using CTGAN, we introduce the use of PCA as a 
dimensionality reduction step before data synthesis. 
Although PCA and GANs have been independently used in 
other domains, the specific combination of PCA and 
CTGAN for generating synthetic power system data has not 
been previously reported. This hybrid approach enables 
efficient and scalable synthetic data generation while 
maintaining correlation with the original data distribution. 
The method is validated on two distinct power system 
scenarios, highlighting its practical applicability and 
generalization potential.  

This article is organized as follows: section 2 covers the 
brief theoretical background of CTGAN and PCA, section 3 
describes the proposed method, results are illustrated in 
section 4, and conclusions are listed in section 5. 

2. THEORETICAL BACKGROUND 

2.1 GENERATIVE ADVERSARIAL NETWORKS 
Generative Adversarial Networks (GANs) are a class of 

ML algorithms that have gained significant attention in 
recent years due to their ability to generate synthetic data that 
resembles the original data [7]. GANs have been applied in 
a wide range of applications, including image and video 
synthesis, natural language processing, and data generation. 
The GAN architecture comprises two neural networks: the 
generator and the discriminator, which operate in opposition 
to each other. The generator is trained to generate synthetic 
data from noise that resembles the original data, while the 
discriminator is trained to distinguish between the real and 
synthetic data [17]. Figure 1 represents a general 
arrangement of GANs. The competition between the two  

 
Fig. 1 – General structure of GAN generator is trained from random noise; 
the Discriminator uses synthetic and real data to distinguish between them. 

networks during training results in the generator learning to 
create increasingly realistic data. This synthetic data can be 
used to increase the diversity of the training dataset and 
improve the accuracy and robustness of the ML model [18] 
while the original data remains protected [19]. 

2.2 CONDITIONAL TABULAR GENERATIVE 
ADVERSARIAL NETWORK 

CTGAN is a special type of GAN, designed to generate 
synthetic tabular data while preserving the statistical 
properties of the original data. As transmission lines’ 
operational data falls into the category of time series data, 
they can be treated as tabular data and augmented using 
CTGAN. Proposed by [16], CTGAN introduces new 
techniques specifically for tabular data, such as “mode-
specific normalization”, “conditional-generator”, and 
“training-by-sampling”. These techniques enable CTGAN to 
significantly outperform other methods for generating 
tabular data. For a numerical feature x, mode-specific 
normalization is applied as  

 𝑥! = "#mode(")
&

, (1) 

where mode(x) is the most frequent value in the column and σ 
is the standard deviation. Mode-specific normalization is a 
technique used to normalize each column of the input data 
based on its specific mode. The mode is defined as the value 
that occurs most frequently in a column. Traditional 
normalization techniques, such as min-max normalization or 
z-score normalization, treat all columns equally, regardless of 
their distribution. However, in some datasets, the columns 
may have different distributions and normalizing them in the 
same way may result in the loss of important information. 
Mode-specific normalization addresses this issue by 
normalizing each column based on its mode. This 
normalization helps stabilize training on skewed or multi-
modal distributions.  In CTGAN, the generator is conditioned 
on discrete variables, such as class labels, to ensure that the 
generated samples reflect the structural characteristics of the 
original data. This conditioning helps the model learn class-
specific patterns. To address data imbalance, CTGAN 
employs a training-by-sampling strategy, where training 
batches are formed by uniformly sampling across the discrete 
modes. This ensures better generalization and stable learning 
across all categories. The generator G and discriminator D in 
CTGAN are trained using a conditional adversarial loss; the 
objective function can be given by  

min
!
max
"

𝐸#∼%data [log 𝐷 (𝑥|𝑐)] + 𝐸&∼%$3log41 − 𝐷(𝐺(𝑧|𝑐)|𝑐)9:    (2) 

where z is a noise vector and c is a conditioning variable that 
guides generation for each class or mode. G(z∣c) is the 
generator that produces synthetic samples from a noise 
vector z, conditioned on a category or mode c. D(x∣c) is the 
discriminator to distinguish real samples x from generated 
ones, also conditioned on c.	 𝐸#∼%data 	 [log 𝐷 (𝑥|𝑐)]	 	denotes the 
expected value over real data, encouraging the discriminator 
to identify real inputs correctly. 𝐸&∼%$3log41 − 𝐷(𝐺(𝑧|𝑐)|𝑐)9: 
represents the expected value over synthetic data, guiding the 
generator to produce outputs that can deceive the 
discriminator, c typically includes metadata like class labels 
or categorical context, enabling class-conditional generation 

2.3 PRINCIPAL COMPONENT ANALYSIS 
PCA is a statistical technique that reduces dataset 

dimensionality by transforming the original variables into 
fewer uncorrelated principal components. These components 
are linear combinations of the original variables, ordered by 
the amount of variance they explain. By retaining the top 
components that capture most of the variance, PCA preserves 
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key information while simplifying the data [20]. 
Mathematically, given a zero-mean data matrix 𝐗 ∈ 𝑅'×), 
where n is the number of observations and p is the number of 
variables. PCA seeks a projection matrix 𝐖 ∈ 𝑅)×* that maps 
X into a lower-dimensional space: Z =XW, where W consists 
of the top k eigenvectors of the covariance matrix Σ = +

'
𝐗,𝐗. 

3. PROPOSED MODEL 
Since power system operational data is sampled at a high 

frequency, the data volume generated through such a faster 
sampling rate is massive. Applying CTGAN directly to the 
real data will require enormous computing and memory 
resources, making it a cumbersome process. Therefore, it is 
proposed to utilize PCA for dimensionality reduction. The 
proposed method is explained with the flow chart in Fig. 2. 
Firstly, data is normalized using min-max scaling. The 
scaled high-dimensional timeseries data 𝐗 ∈ 𝑅'×) is 
transformed into a lower-dimensional space through PCA, 

 𝑍real = 𝑋real𝑊. (3) 

where 𝐖 ∈ 𝑅)×* contains the top k eigenvectors of the 
covariance matrix Σ . This is then followed by the generation 
of synthetic data using CTGAN. The lower-dimensional 
space Zreal is used to train the CTGAN model. After training, 
the generator G(z|c) produces synthetic samples 

 𝒁syn = 𝐺(𝑧|𝑐). (4) 

The lower-dimensional synthetic data is then transformed 
to the original feature space through inverse PCA and inverse 
scaling, 

 𝐗syn = 𝐙syn𝐖4.  (5) 

To evaluate the effectiveness of the proposed synthetic 
data generation method, the end-to-end LSTM model 
introduced by Rafique et al. in [14] was adopted. It is a fault 
classification model that utilizes end-to-end learning through 
LSTM, as adopted. The original model is trained on 27,000 
examples and classifies faults into five categories: no fault 
(NF), line to ground (LG), line to line (LL), line to line to 
ground (LLG), and Line to Line to line (LLL). For this study, 
only 270 real examples per class were selected from the 
original dataset to simulate a limited data scenario. The 
dataset was split into 80% for training and 20% for testing. 

Initially, the model was trained using only the 270 real 
examples per class. However, the validation loss diverged, 
indicating that the dataset was insufficient for generalization 
(see Fig. 3a). To address this, synthetic data was generated 
using the proposed PCA–CTGAN method and combined 
with the real data. Separate models were trained with 
increasing amounts of synthetic data (1,500, 3,000, 4,500, 
6,000, and 9,000 synthetic examples per class), each 
alongside the original 270 real examples. The training 
progressions are shown in Fig. 3(b)–(f). 

4. RESULTS 
This section presents the results of the trained models 

using the proposed synthetic data technique. 

4.1 FAULT CLASSIFICATION USING END-TO-END 
LSTM 

The objective of this evaluation is not to propose a new 
ML-based fault classification model, but to demonstrate that 

the proposed synthetic data generation method can support 
existing DL architectures in data-scarce scenarios. In this 
study, the LSTM model from [14] serves as a reference to 
evaluate how model performance changes when real data is 
supplemented with synthetic data generated using the 
proposed PCA–CTGAN approach. This allows a controlled 
evaluation of the data augmentation strategy without 
introducing architectural biases. 

Six models were trained using different combinations of 
real and synthetic data. All models were evaluated using real 
test data only to ensure consistent benchmarking. The 
training hyperparameters were kept identical across all 
models and followed those specified in [14]. A 
comprehensive confusion matrix for each trained model is 
presented in Fig. 4. These matrices are generated using real 
test data, with fault impedance values randomly ranging 
from 0.1 Ω to 250 Ω to reflect practical operating conditions. 
As seen in Fig. 4(a), the model trained solely on 270 real 
examples per class exhibits poor generalization, with high 
misclassification across all fault types, particularly between 
LG, LLG, and LLL faults. As synthetic data is progressively 
added (as shown in Fig. 4(b) to Fig. 4(f)), the classification 
accuracy improves noticeably across all classes, and the 
misclassification rates decrease significantly. The best 
results are obtained when the model is trained with 9,000 
synthetic samples per class, as shown in Fig. 4(f), where the 
diagonal dominance in the matrix confirms strong class-
specific learning. This trend illustrates the potential value of 
the proposed PCA-CTGAN-based synthetic data generation 
approach in enhancing ML models when real data is limited. 
These results are also summarized in Table 1. 

Table 1  
Performance comparison of models with real and synthetic data. 

Model 
Real 

Examples 
Each Class 

Synthetic 
Examples 
Each Class 

Accuracy True Positives 
(out of 1500) 

1 270 0 50.93% 764 
2 270 1500 62.87% 960 
3 270 3000 58.67% 880 
4 270 4500 85.40% 1281 
5 270 6000 80.67% 1210 
6 270 9000 86.07% 1291 

4.2 SUB-SYNCHRONOUS OSCILLATIONS 
To demonstrate the general applicability of the proposed 

synthetic data generation approach, the method was further 
tested on sub-synchronous oscillations (SSO) caused in the 
grid due to the integration of doubly fed induction 
generators. PMU data of phase A is used to train the 
CTGAN. The dataset used in this example is introduced in 
[21], and a screenshot of it is shown in Fig. 5. The dataset is 
publicly available at IEEE Dataport [22]. Duration of the 
first two seconds is used for synthetic data generation. 
Figure 6 illustrates that the synthetic signals closely 
resemble the real SSO waveforms in terms of both amplitude 
and frequency characteristics. This result confirms that the 
method can successfully learn and reproduce statistically 
consistent patterns even in non-classification, waveform-
level applications. More importantly, it highlights the 
flexibility of the approach in supporting a range of machine 
learning tasks in power systems through data augmentation 
with realistic synthetic data, particularly when access to 
operational records is constrained. 
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Fig. 2 – Proposed synthetic data generation method, PCA reduces dimensionality of raw data (left), enabling CTGAN to synthesize realistic samples (right). 

 
Fig. 3 – Training progress of end-to-end model with real and synthetic data (a) using 270 examples of real data (b) 270 real, 1500 synthetic, (c) 270 real, 

3000 synthetic, (d) 270 real, 4500 synthetic, (e) 270 real, 6000 synthetic, (f) 270 real, 9000 synthetic. 

 
Fig. 4 – Confusion matrix for fault classification (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4, (e) Model 5, (f) Model 6. 
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Fig. 5 – Screenshot of instantaneous current PMU data, during sub-synchronous oscillations, adapted from [21]. 

 

Fig. 6 – Training and synthetic data for sub-synchronous oscillations. 

5. CONCLUSIONS 
This paper presented an innovative hybrid approach 

combining PCA and CTGAN to generate synthetic power 
system operational data for training ML models. Our work 
makes significant contributions by introducing the first PCA-
CTGAN framework specifically designed for power system 
timeseries data, effectively addressing the critical challenge 
of limited real-world datasets while overcoming the 
computational barriers of processing high-resolution 
measurements. The method's effectiveness is demonstrated 

through substantial improvements in fault detection 
performance, where augmentation with synthetic data boosts 
LSTM model accuracy from 50.93 % to 86.07 %, a 
remarkable 35.14 % enhancement that validates the 
approach's ability to compensate for data scarcity. By 
incorporating PCA as a preprocessing step, we achieved 
efficient dimensionality reduction, making the solution 
practical for real-world high-frequency power system 
applications. Beyond fault detection, the method's strength is 
further confirmed by its successful application to sub-
synchronous oscillation scenarios, suggesting a broader 
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potential for power system monitoring and protection tasks. 
These advances offer power utilities a practical solution to 
overcome data limitations while maintaining model 
performance, with promising extensions to renewable 
integration and other emerging grid challenges. The 
reproducible framework, validated on publicly available 
datasets, sets a foundation for future research in synthetic 
data generation for power systems. 
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