
Rev. Roum. Sci. Techn.– Électrotechn. et Énerg.

Vol. 69, 3, pp. 335–340, Bucarest, 2024

Automatique et ordinateurs

Automatic Control and Computer Sciences

1 School of Automation, University of Electronic Science and Technology of China, Chengdu 610054 China. E-mails:

Ruiyang.wang@std.uestc.edu.cn, guqiuxiang@alu.uestc.edu.cn, siyu.lu@std.uestc.edu.cn, jravis.tian@std.uestc.edu.cn, (*) winfirms@uestc.edu.cn
2 College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China. E-mail: ztyin@gzu.edu.cn
3 School of Geographical Sciences, Southwest University, Chongqing, 400715, China. E-mail: xliswu@swu.edu.cn
4 Division of Electrical and Computer Engineering, Louisiana State University, Baton Rouge 70803 LA, USA. E-mail: xchen87@lsu.edu
5 Department of Geography and Anthropology, Louisiana State University, Baton Rouge 70803 LA, USA. E-mail: (*) yin.lyra@gmail.com

DOI: 10.59277/RRST-EE.2024.69.3.14

PARALLEL PLATFORM CONTROLLER BASED ON ADAPTIVE
DIFFERENCE ALGORITHM – PART 2

RUIYANG WANG1, QIUXIANG GU1, SIYU LU1, JIAWEI TIAN1, ZHENGTONG YIN2,*, XIAOLU LI3,
XIAOBING CHEN4, LIRONG YIN5, WENFENG ZHENG1,*

Keywords: Workspace control; Model predictive controller (MPC); Adaptive difference algorithm; Parallel platform control.

There are two main approaches to motion control on parallel platforms: joint space control and workspace control. Joint space

control is an easy-to-implement semi-closed-loop strategy, but its control effect could be better. The workspace control is to obtain

the real-time position of the parallel platform through the forward solution and close the speed and position loop of the parallel

platform in the workspace. This paper uses a Model Predictive Controller (MPC) to control the parallel platform with workspace

control as the research goal. The loss function is constructed based on the swarm intelligence optimization idea, and the adaptive

difference algorithm is used to optimize the parameters of MPC. This part uses MATLAB to perform simulation experiments to

complete the S-shaped velocity trajectory planning algorithm. In addition, the control effect of MPC and position-loop PI

controller in a robust disturbance environment is compared. Experiments show that MPC has the advantages of low energy

consumption and high control accuracy.

1. INTRODUCTION

In the first part, we deeply study the related methods of
the existing parallel platform control and design a model
predictive controller (MPC) to complete the parallel
platform control. We start by modeling the state space of the
controlled parallel platform from modern control theory.
Then, the MPC of this six-degree of freedom (6-DOF)
parallel platform is built based on this. After the model was
established, we combined the swarm intelligence
optimization idea to construct the loss function and used the
adaptive difference (ADE) algorithm to optimize the
parameters of MPC. Finally, we implemented the model on
the upper computer in C++ and carried out a physical test.
We obtained satisfactory test results, which verified the
model's good performance in practical applications.

Based on Part 1, this part will expand our research and
turn the focus to MATLAB simulation. By introducing a
simulation environment, we will comprehensively evaluate
and compare the proposed MPC model with a conventional
PI controller. This comparison will help deepen our
understanding of the performance benefits of MPC on
parallel platforms and provide a solid foundation for further
research. In this section, we discuss the design of the
simulation experiment and the corresponding result analysis
in detail to provide strong support for improving the control
efficiency of the parallel platform.

2. ALGORITHM SIMULATION AND RESULTS

2.1 BENCHMARK FUNCTION SELECTION

MATLAB is used to complete the simulation experiment
to verify the theory of the MPC control algorithm and
complete the optimal selection of MPC parameters. The
benchmark function expressions and their optimal values
used in this experiment are shown in Table; the Sphere,
Rosenbrock, Schwefel’s 2.22, and Schwefel’s 1.2 functions

are unimodal test functions. This type of function has only
a minimum value and is mainly used to verify the
algorithm's development ability. Griewank and Rastrigin
functions are multimodal functions with multiple minimum
values, which can be used to test the algorithm's exploration
ability. The test benchmark functions can fully verify the
convergence, convergence speed, and global optimization
capabilities of the differential evolution (DE) algorithm.

Table 1

Test benchmark functions and their optimal values

Benchmark

function
Benchmark function equation Best fitness

Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 0

Rosenbrock 𝑓(𝑥) = ∑[100(𝑥𝑖
2 − 𝑥𝑖+1)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 0

Griewank 𝑓(𝑥) = ∑
𝑥𝑖

2

4000
− ∏ cos (

𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1

𝑛

𝑖=1

 0

Rastrigin 𝑓(𝑥) = 10𝑛 + ∑[𝑥𝑖
2 − 10cos(2π𝑥𝑖)]

𝑛

𝑖=1

 0

Schwefel’s 2.22 𝑓(𝑥) = ∑|𝑥𝑖|

𝑛

𝑖=1

+ ∏|𝑥𝑖|

𝑛

𝑖=1

 0

Schwefel’s 1.2 𝑓(𝑥) = ∑ (∑ 𝑥𝑖

𝑖

𝑗=1

)

2
𝑛

𝑖=1

 0

2.2 DIFFERENTIAL EVOLUTION ALGORITHM TEST

The population must first be initialized to test the
benchmark function using the ADE. Set the individual
dimension of the population to 6, the population iterative
evolution is ten times, and the individuals in the population
are initialized in a uniform distribution. First, the Schwefel
1.2 benchmark function in Table 1 is used to test the impact
of population size, variation scaling factor, and crossover
rate on algorithm performance. When the population size is
30, 100, and 300, respectively, and the test variation scaling

336 Parallel platform controller based on adaptive difference algorithm – Part 2 2

factor and crossover rate are 0.1, 0.5, and 0.9, this paper
calculates the average fitness of the DE algorithm to the test
benchmark function. The average fitness is obtained by
taking 10 consecutive trials and arithmetically averaging the
results. The impact of the parameters of the DE algorithm
on the average fitness is shown in Table 2.

Table 2

Effect of differential evolution algorithm parameters on results

Population

size

Variation scaling

factor
Crossover rate Average fitness

30

0.1 0.1 29.6212

0.5 0.5 8.1958

0.9 0.9 21.6096

100

0.1 0.1 14.3354

0.5 0.5 1.3259

0.9 0.9 10.3520

300

0.1 0.1 6.5354

0.5 0.5 0.5868

0.9 0.9 3.2705

It can be seen from Table 2 that under the same variation

scaling factor and crossover rate, as the number of
individuals in the population increases, the average fitness
obtained by the DE algorithm has been significantly
improved, which is closer to the theoretical value. However,
as the number of populations continues to increase, the
convergence speed of the average fitness of the algorithm
shows a slowing down trend. In the case of the same
population size, too small or too large variation scaling
factor and crossover rate cannot make the individuals in the
population achieve a better convergence effect. In the whole
experiment, when the population size is set to 300, the

variation scaling factor and crossover rate are set to 0.5. The
minimum average fitness is 0.5868, closest to the theoretical
value of 0. Therefore, if the platform's computing power
allows the number of individuals in the population to be as
large as possible, the variation scaling factor and crossover
rate need to be chosen for better experimental values.
To verify the versatility of the DE algorithm, the DE

algorithm is used to test all the test benchmark functions in
Table 1. The number of individuals in the initialization
population is 300, the individual dimension is 6, and the
variation scaling factor and crossover rate are set to 0.5. For
the calculation results, the method of carrying out ten
experiments and taking the average is also adopted, and the
obtained test results are shown in Table 3.

Table 3

Differential evolution algorithm benchmark function test results

Benchmark

function
Best fitness Average fitness

Sphere 0 0.0307

Rosenbrock 0 9.8143

Griewank 0 0.0614

Rastrigin 0 5.1943

Schwefel’s 2.22 0 0.1941

Schwefel’s 1.2 0 0.6562

It can be found from Table 3 that the optimization results of

the DE algorithm for the two benchmark functions of

Rosenbrock and Rastrigin are not ideal. The resulting average

fitness differs considerably from the optimal fitness.

The convergence speed images of each benchmark

function are shown in Fig. 1.

Fig. 1 – Convergence speed of differential evolution algorithm in benchmark function: a) sphere function; b) Rosenbrock function;

c) Griewank function; d) Rastrigin function; e) Schwefel’s 2.22 function; f) Schwefel’s 1.2 function.

Comparing the convergence images of each function in

Fig. 1, the fitness search range of the two functions in

Figs. 1b and 1d is larger than that of other functions. After

10 iterations of DE, the fitness of the Rosenbrock function

[1] dropped from 3 500 to 9.81.

The Rastrigin function [2] is also optimized from the

initial 35 to 5.19, which has a good optimization effect.

Figure 1 shows that the DE algorithm [3] is highly

3 Ruiyang Wang et al. 337

versatile and can be used to find the optimal solution for

various nonlinear problems.

In addition, it can also be seen from Fig. 1 that the DE

algorithm converges faster at the initial stage of iteration.

Still, as the number of iterations increases, the improvement

of the fitness of new individuals needs to be made apparent.

1.1. ADAPTIVE DIFFERENTIAL EVOLUTION

(ADE) TESTING

The following conclusions can be drawn by analyzing

the variation strategy of the ADE in

 xi
'=xbest+F(xr1-xr2). (1)

There are large differences between individuals in the

initial stage of the iteration. At this time, the mutation

operation will cause a large amount of individual movement,

and finding the global optimal point near the individual is

challenging. Therefore, this paper considers the linear

correlation between the differential variation factor and the

number of iterations to form an ADE algorithm [4–7]. The

differential variation factor is given by:

 F=
Icnt

2×Inum
. (2)

Among them, Icnt is the current iteration number, and

Inum is the total iteration number.

It can be seen from eq. (2) that the variation scaling factor

at the initial stage of the algorithm is small, which can enable

uniformly distributed individuals to detect the minimum

points around the initial value fully. When the number of

iterations increases gradually, the scaling factor is increased

accordingly to accelerate the convergence of the population.

ADE algorithm [8] and DE algorithm [9] are used to test the

benchmark functions of Table 1, and the test results are

shown in Table 4, and the convergence images of each test

benchmark function corresponding to ADE are shown in Fig. 2.

Table 4

ADE and DE benchmark function test comparison results

Benchmark

function

Best

fitness

DE Average

fitness

ADE Average

fitness

Sphere 0 0.0307 0.0022

Rosenbrock 0 9.8143 3.2575

Griewank 0 0.0614 0.0375

Rastrigin 0 5.1943 4.7951

Schwefel’s 2.22 0 0.1941 0.0575

Schwefel’s 1.2 0 0.6562 0.0802

From the comparison of the results of the ADE and DE

algorithms in Table 4, the search performance of the ADE

algorithm is significantly better than that of the DE

algorithm. It can be seen from Figure 2 that although the

convergence speed of ADE is not fast at the initial stage of

algorithm iteration, with the increase of the number of

iterations, the differential variation factor is also increasing

so that the population individuals in the late iteration can

still have a certain development ability.

(a) (b) (c)

(d) (e) (f)

Fig. 2 – Convergence effect diagram of the adaptive differential evolution algorithm in the benchmark function: a) Sphere function;

b) Rosenbrock function; c) Griewank function; d) Rastrigin function; e) Schwefel’s 2.22 function; f) Schwefel’s 1.2 function.

1.2. PERFORMANCE TEST OF MPC CONTROLLER

Functional modules in the MATLAB simulation platform
are required to test the performance and improvement of the
MPC controller's parameters. The simulation system's three
main modules are the reference trajectory setting, motion
controller, and controlled object.

The S-type velocity trajectory planning algorithm [10,11]
sets the reference trajectory. This algorithm produces a
trajectory image with continuous acceleration. The control
function 𝐔(𝑘) of the system is trapezoidal, and the
reference acceleration is obtained through the S-type

velocity trajectory planning algorithm. The jerk is set

to 4 mm/s3, and after 1 second of jerk, the reference control

action reaches a maximum value of 4 mm/s2. The system
goes through a sequence of acceleration, uniform
acceleration, deceleration, uniform velocity, acceleration
and deceleration, uniform deceleration, and deceleration, in
that order, within 1-second intervals, to complete the S-
shaped velocity trajectory planning.

Factors such as friction and unmodeled dynamics are not

considered in the state space modeling of parallel platforms

[12]. Therefore, bases reference control action 𝐔(𝑘) ,

338 Motion controller for six degrees parallel platform – Part 2 4

Gaussian noise with a standard deviation of 2 mm/s2 and

fixed noise with a fixed value of 0.2 mm/s2 are

superimposed to simulate external disturbances and model

mismatches. For the reference control effect after

superimposed noise, the effect of using the open-loop control

method to control the controlled object is shown in Fig. 3:

Fig. 3 – S-shaped speed trajectory open-loop control.

Figure 3 shows that after the acceleration of the controlled

object is superimposed on the interference noise signal, the

actual velocity and displacement have seriously deviated

from the expected trajectory. The effect of open-loop control

could be better, and a motion controller must be designed to

control the controlled object. To apply the ADE algorithm in

the process of MPC parameter optimization, the MPC is

designed according to the control law,

 �̂�(𝑘) = −(�̅�𝐓�̅��̅� + �̅�)−1�̅�𝐓�̅�(�̅�𝐗(𝑘) − 𝐘𝑟) (3)

The control effect was evaluated using the evaluation

function of

𝐹𝑐𝑜𝑠𝑡 =

∑ {[𝐗(𝑘) − 𝐘𝒓(𝒌)]T[𝐗(𝑘) − 𝐘𝑟(𝑘)] + 𝐔𝐓(𝒌)𝐔(𝑘)}𝑛
𝑘=1 + 𝑁2. (4)

Each individual in the ADE algorithm corresponds to a set

of parameters [P Q R N]T of the controller. Set the

number of individuals in the population to 100, the crossover

factor to 0.5, and the adaptive variation factor to be

dynamically calculated by eq. (2).

The number of iterations is 10, and the discrete time step ts

is 0.01 seconds. After each mutation and crossover process, all

individuals in the population are brought into Equation (3).

This step tracks the reference trajectory and detects the system

state of the controlled object according to the feedback loop.

Use eq. (4) to evaluate the performance of MPC control

parameters and keep the best ones. The optimal control

parameters obtained after the algorithm is completed are

shown in Table 5: the N 2 , which introduces the term eq. (4)

has successfully reduced the prediction time domain and

improved the real-time performance of the control system.

In addition to directly punishing the N2 term in eq. (4),

the 𝐏, 𝐐, and R parameters are all indirectly punished

through the control effect generated by the control effect of

eq. (3). Equation (3) is obtained, assuming that the control

action U is unconstrained. Therefore, the penalty R for

energy consumption is small, while the penalty for steady-

state error P and process error Q is large. In the physical

system, the power supply mode is DC [13–15], which is not

sensitive to energy consumption. Therefore, it is better to use

a larger control amount to ensure better control performance

without exceeding the parallel platform's power load and

physical limit.

Table 5

MPC control parameters obtained by ADE algorithm

Control
parameter

N P Q R

Parameter

value
3 [9.9736

7.1022
] [5.0224

9.4630
] 0.01

The parameter group [P Q R N]T obtained by

ADE solution meets the requirements of the control system.

In physical system deployment, limiting the control effect

within a safe range is necessary.

The control law of eq. (3) is used to verify the MPC

control performance and robustness. Combined with the

control parameters in Table 5, the motion control of the

model after adding noise in Fig. 3 is performed. A position

loop PI controller was added as a control group to verify the

superiority of MPC control performance. The effect of using

MPC and PI controllers to control the noise trajectory is

shown in Fig. 4.

The acceleration in Fig. 4 is the control action U(k). It can

be seen from Fig. 4 that both the position loop PI controller

and the MPC can complete the position servo tracking task

very well. Further, observe the velocity tracking curve and the

control action U(k). However, the PI controller does not

consider the motion speed and energy consumption

accordingly. Therefore, the speed curve and acceleration curve

tracking effect could be better. In the case of the same

interference noise, after model predictive control, the motion

speed curve of the controlled object almost completely

5 Ruiyang Wang et al. 339

coincides with the reference speed curve. It shows that the

MPC controller can complete the displacement and velocity

tracking of the reference trajectory at the same time. In

addition, the MPC controller U(k) deviation from the reference

value is also smaller than that of the PI controller, indicating

that the MPC has stronger energy control performance.

Fig. 4 – Comparison of MPC and PI control effects.

Then, the position servo tracking error of the PI controller

and MPC will be compared. Draw the displacement error of

the two algorithms during the entire movement process, as

shown in Fig. 5.

Fig. 5 – Error of PI controller and MPC with reference displacement.

It can be seen from Fig. 5 that the servo tracking accuracy

of MPC is higher than that of the PI controller under the same

noise environment. It can be concluded that the MPC

algorithm has better control performance and stronger

robustness than the PI controller.

3. DISCUSSION AND CONCLUSION

The controller constructed by the dynamic method has a
better dynamic response, which is the key to further
improving the control performance of the parallel platform
[16-19]. In this paper, an MPC is first designed to control the
6-DOF parallel platform. Then, based on the swarm
intelligence optimization idea, the loss function for
optimizing the MPC parameters is constructed, and the ADE
algorithm is used to optimize the MPC parameters. Then, the

MPC algorithm is implemented on the upper computer of the
control center by using C++ language. The physical objects
of the parallel platform are controlled, and good control
results are obtained. Finally, the S-shaped velocity trajectory
planning algorithm was completed by simulation
experiments on MATLAB, and the control effects of MPC
and position loop PI controller in a robust disturbance
environment were compared, verifying the MPC algorithm's
superiority. In future research, we will test our platform in
more diverse environments to explore control schemes for
specific industrial application scenarios.

ACKNOWLEDGEMENTS

Supported by Sichuan Science and Technology Program
(2021YFQ0003, 2023YFSY0026, 2023YFH0004).

AUTHOR CONTRIBUTIONS

Conceptualization, Qiuxiang Gu, XiaoBing Chen and
Wenfeng Zheng; methodology, Jiawei Tian and Lirong Yin;
software, Xiaolu Li, Qiuxiang Gu and Siyu Lu; formal
analysis, Jiawei Tian, Xiaolu Li and Zhengtong Yin; writing-
original draft preparation, Ruiyang Wang, Siyu Lu,
Zhengtong Yin and Lirong Yin; writing-review and editing,
Ruiyang Wang, Wenfeng Zheng and Lirong Yin; funding
acquisition, Wenfeng Zheng. All authors have read and
agreed to the published version of the manuscript.

Received on 4 March 2024

REFERENCES

1. J. Ma, H. Li, Research on Rosenbrock function optimization problem
based on improved differential evolution algorithm, Journal of
Computer and Communications, 7, 107–120 (2019).

2. A. Omeradzic, H.-G. Beyer, in Parallel Problem Solving from Nature,
17th International Conference (PPSN), Springer, Dortmund,
Germany, September 10–14, 2022, Proceedings, Part II. pp. 499–
511 (2022).

3. M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, Differential

340 Parallel platform controller based on adaptive difference algorithm – Part 2 6

Evolution: A review of more than two decades of research, Engineering
Applications of Artificial Intelligence, 90, 103479 (2020).

4. T.-C. Chiang, C.-N. Chen, Y.-C. Lin, Parameter control mech in
differential evolution: A tutorial review and taxonomy, IEEE
Symposium on Differential Evolution (SDE), pp. 1–8 (2013).

5. B. Zhang, X. Sun, S. Liu, X. Deng, Tracking control of multiple
unmanned aerial vehicles incorporating disturbance observer and
model predictive approach, Transactions of the Institute of
Measurement and Control, 42, 5, pp. 951–964 (2020).

6. D. Adhikari, E. Kim, H. Reza, A fuzzy adaptive differential evolution for multi-
objective 3D UAV path optimization, IEEE Congress on Evolutionary
Computation (CEC), Donostia, Spain, pp. 2258–2265 (2017).

7. X. Zhang, Shift based adaptive differential evolution for PID controller
designs using swarm intelligence algorithm, Cluster Comput, 20,
pp. 291–299 (2017).

8. I. Farda, A. Thammano, A self-adaptive differential evolution algorithm
for solving optimization problems, International Conference on
Computing and Information Technology, Cham: Springer
International Publishing, pp. 68–76 (2022).

9. M.F. Ahmad, N.A.M. Isa, W.H. Lim, K.M. Ang, Differential evolution:
A recent review based on state-of-the-art works, Alexandria
Engineering Journal, 61, 3831–3872 (2022).

10. M. Zhang et al., An S-type ascent trajectory control method based
on scramjet engine working boundary of RBCC , 33rd Chinese
Control and Decision Conference (CCDC), pp. 5070–5073,
IEEE, (2021).

11. M. Wang, J. Xiao, F. Zeng, G. Wang, Research on optimized time-

synchronous online trajectory generation method for a robot arm,

Robotics, and Autonomous Systems 126, 103453 (2020).
12. X. Yang, H. Wu, B. Chen, S. Kang, S. Cheng, Dynamic modeling and

decoupled control of a flexible Stewart platform for vibration

isolation, Journal of Sound and Vibration, 439, 398–412 (2019).

13. F. Amrane, A. Chaiba, B. Francois, Improved adaptive nonlinear

control for variable speed wind-turbine fed by direct matrix
converter, Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg., 68,

1, pp. 58–64 (2023).

14. O.D. Laudatu, M. Iordache, Comparison of inductive and capacitive
couplings used to close the feedback loop used in switch mode

power supplies, Rev. Roum. Sci. Techn. – Électrotechn. et Énerg.,

68, 4, pp. 363–368 (2023).
15. A.C. Ghoerghe, H. Andrei, E. Diaconu, G. Seritan, B. Enache,

Système intelligent pour la réduction de la consommation
électrique en veille des équipements ménagers, Rev. Roum.

Sci. Techn. – Électrotechn. et Énerg., 68, 4, pp. 413–418

(2023).
16. C. Chen, H. Pham, Trajectory planning in parallel kinematic

manipulators using a constrained multi -objective

evolutionary algorithm, Nonlinear Dynamics, 67, 2, pp.
1669–1681 (2011).

17. C.-T. Chen, T.-T. Liao, A hybrid strategy for the time-and energy-

efficient trajectory planning of parallel platform manipulators,
Robotics and Computer-Integrated Manufacturing, 27, 1, pp. 72–

81 (2011).

18. J.R.G. Martínez, J.R. Reséndiz, M.Á.M. Prado, E.E.C. Miguel,
Assessment of jerk performance s-curve and trapezoidal velocity

profiles, XIII International Engineering Congress (CONIIN),

IEEE, pp. 1–7 (2017).
19. Y. Zuo, J. Mei, C. Jiang, X. Yuan, S. Xie, C.H. Lee, Linear active

disturbance rejection controllers for PMSM speed regulation

system considering the speed filter, IEEE Transactions on Power
Electronics, 36, 12, pp. 14579–14592 (2021).

hp
Comment on Text
Gheorghe

hp
Comment on Text
2

hp
Comment on Text
7

hp
Comment on Text
Smart system for standby power consumption reduction of household equipment

