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There are two main approaches to motion control on parallel platforms: joint space control and workspace control. Joint space 

control is an easy-to-implement semi-closed-loop strategy, but its control effect could be better. The workspace control is to obtain 

the real-time position of the parallel platform through the forward solution and close the speed and position loop of the parallel 

platform in the workspace. This paper uses a Model Predictive Controller (MPC) to control the parallel platform with workspace 

control as the research goal. The loss function is constructed based on the swarm intelligence optimization idea, and the adaptive 

difference algorithm is used to optimize the parameters of MPC. This part uses MATLAB to perform simulation experiments to 

complete the S-shaped velocity trajectory planning algorithm. In addition, the control effect of MPC and position-loop PI 

controller in a robust disturbance environment is compared. Experiments show that MPC has the advantages of low energy 

consumption and high control accuracy. 

1. INTRODUCTION 

In the first part, we deeply study the related methods of 
the existing parallel platform control and design a model 
predictive controller (MPC) to complete the parallel 
platform control. We start by modeling the state space of the 
controlled parallel platform from modern control theory. 
Then, the MPC of this six-degree of freedom (6-DOF) 
parallel platform is built based on this. After the model was 
established, we combined the swarm intelligence 
optimization idea to construct the loss function and used the 
adaptive difference (ADE) algorithm to optimize the 
parameters of MPC. Finally, we implemented the model on 
the upper computer in C++ and carried out a physical test. 
We obtained satisfactory test results, which verified the 
model's good performance in practical applications. 

Based on Part 1, this part will expand our research and 
turn the focus to MATLAB simulation. By introducing a 
simulation environment, we will comprehensively evaluate 
and compare the proposed MPC model with a conventional 
PI controller. This comparison will help deepen our 
understanding of the performance benefits of MPC on 
parallel platforms and provide a solid foundation for further 
research. In this section, we discuss the design of the 
simulation experiment and the corresponding result analysis 
in detail to provide strong support for improving the control 
efficiency of the parallel platform. 

2. ALGORITHM SIMULATION AND RESULTS 

2.1 BENCHMARK FUNCTION SELECTION 

MATLAB is used to complete the simulation experiment 
to verify the theory of the MPC control algorithm and 
complete the optimal selection of MPC parameters. The 
benchmark function expressions and their optimal values 
used in this experiment are shown in Table; the Sphere, 
Rosenbrock, Schwefel’s 2.22, and Schwefel’s 1.2 functions 

are unimodal test functions. This type of function has only 
a minimum value and is mainly used to verify the 
algorithm's development ability. Griewank and Rastrigin 
functions are multimodal functions with multiple minimum 
values, which can be used to test the algorithm's exploration 
ability. The test benchmark functions can fully verify the 
convergence, convergence speed, and global optimization 
capabilities of the differential evolution (DE) algorithm. 

Table 1 

Test benchmark functions and their optimal values 

Benchmark 

function 
Benchmark function equation Best fitness 

Sphere 𝑓(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 0 

Rosenbrock 𝑓(𝑥) = ∑[100(𝑥𝑖
2 − 𝑥𝑖+1)2 + (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 0 

Griewank 𝑓(𝑥) = ∑
𝑥𝑖

2

4000
− ∏ cos (

𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1

𝑛

𝑖=1

 0 

Rastrigin 𝑓(𝑥) = 10𝑛 + ∑[𝑥𝑖
2 − 10cos(2π𝑥𝑖)]

𝑛

𝑖=1

 0 

Schwefel’s 2.22 𝑓(𝑥) = ∑|𝑥𝑖|

𝑛

𝑖=1

+ ∏|𝑥𝑖|

𝑛

𝑖=1

 0 

Schwefel’s 1.2 𝑓(𝑥) = ∑ (∑ 𝑥𝑖

𝑖

𝑗=1

)

2
𝑛

𝑖=1

 0 

2.2 DIFFERENTIAL EVOLUTION ALGORITHM TEST 

The population must first be initialized to test the 
benchmark function using the ADE. Set the individual 
dimension of the population to 6, the population iterative 
evolution is ten times, and the individuals in the population 
are initialized in a uniform distribution. First, the Schwefel 
1.2 benchmark function in Table 1 is used to test the impact 
of population size, variation scaling factor, and crossover 
rate on algorithm performance. When the population size is 
30, 100, and 300, respectively, and the test variation scaling 
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factor and crossover rate are 0.1, 0.5, and 0.9, this paper 
calculates the average fitness of the DE algorithm to the test 
benchmark function. The average fitness is obtained by 
taking 10 consecutive trials and arithmetically averaging the 
results. The impact of the parameters of the DE algorithm 
on the average fitness is shown in Table 2. 

Table 2 

Effect of differential evolution algorithm parameters on results 

Population 

size 

Variation scaling 

factor 
Crossover rate Average fitness 

30 

0.1 0.1 29.6212 

0.5 0.5 8.1958 

0.9 0.9 21.6096 

100 

0.1 0.1 14.3354 

0.5 0.5 1.3259 

0.9 0.9 10.3520 

300 

0.1 0.1 6.5354 

0.5 0.5 0.5868 

0.9 0.9 3.2705 

 
It can be seen from Table 2 that under the same variation 

scaling factor and crossover rate, as the number of 
individuals in the population increases, the average fitness 
obtained by the DE algorithm has been significantly 
improved, which is closer to the theoretical value. However, 
as the number of populations continues to increase, the 
convergence speed of the average fitness of the algorithm 
shows a slowing down trend. In the case of the same 
population size, too small or too large variation scaling 
factor and crossover rate cannot make the individuals in the 
population achieve a better convergence effect. In the whole 
experiment, when the population size is set to 300, the 

variation scaling factor and crossover rate are set to 0.5. The 
minimum average fitness is 0.5868, closest to the theoretical 
value of 0. Therefore, if the platform's computing power 
allows the number of individuals in the population to be as 
large as possible, the variation scaling factor and crossover 
rate need to be chosen for better experimental values. 
To verify the versatility of the DE algorithm, the DE 

algorithm is used to test all the test benchmark functions in 
Table 1. The number of individuals in the initialization 
population is 300, the individual dimension is 6, and the 
variation scaling factor and crossover rate are set to 0.5. For 
the calculation results, the method of carrying out ten 
experiments and taking the average is also adopted, and the 
obtained test results are shown in Table 3. 

Table 3 

Differential evolution algorithm benchmark function test results 

Benchmark 

function 
Best fitness Average fitness 

Sphere 0 0.0307 

Rosenbrock 0 9.8143 

Griewank 0 0.0614 

Rastrigin 0 5.1943 

Schwefel’s 2.22 0 0.1941 

Schwefel’s 1.2 0 0.6562 

It can be found from Table 3 that the optimization results of 

the DE algorithm for the two benchmark functions of 

Rosenbrock and Rastrigin are not ideal. The resulting average 

fitness differs considerably from the optimal fitness. 

The convergence speed images of each benchmark 

function are shown in Fig. 1. 

 

 
 

Fig. 1 – Convergence speed of differential evolution algorithm in benchmark function: a) sphere function; b) Rosenbrock function;  

c) Griewank function; d) Rastrigin function; e) Schwefel’s 2.22 function; f) Schwefel’s 1.2 function. 

 

Comparing the convergence images of each function in 

Fig. 1, the fitness search range of the two functions in  

Figs. 1b and 1d is larger than that of other functions. After 

10 iterations of DE, the fitness of the Rosenbrock function 

[1] dropped from 3 500 to 9.81.  

The Rastrigin function [2] is also optimized from the 

initial 35 to 5.19, which has a good optimization effect. 

Figure 1 shows that the DE algorithm [3] is highly 
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versatile and can be used to find the optimal solution for 

various nonlinear problems.  

In addition, it can also be seen from Fig. 1 that the DE 

algorithm converges faster at the initial stage of iteration. 

Still, as the number of iterations increases, the improvement 

of the fitness of new individuals needs to be made apparent. 

1.1. ADAPTIVE DIFFERENTIAL EVOLUTION 

(ADE) TESTING 

The following conclusions can be drawn by analyzing 

the variation strategy of the ADE in  

 xi
'=xbest+F(xr1-xr2). (1) 

There are large differences between individuals in the 

initial stage of the iteration. At this time, the mutation 

operation will cause a large amount of individual movement, 

and finding the global optimal point near the individual is 

challenging. Therefore, this paper considers the linear 

correlation between the differential variation factor and the 

number of iterations to form an ADE algorithm [4–7]. The 

differential variation factor is given by: 

 F=
Icnt

2×Inum
. (2) 

Among them, Icnt is the current iteration number, and 

Inum is the total iteration number. 

It can be seen from eq. (2) that the variation scaling factor 

at the initial stage of the algorithm is small, which can enable 

uniformly distributed individuals to detect the minimum 

points around the initial value fully. When the number of 

iterations increases gradually, the scaling factor is increased 

accordingly to accelerate the convergence of the population. 

ADE algorithm [8] and DE algorithm [9] are used to test the 

benchmark functions of Table 1, and the test results are 

shown in Table 4, and the convergence images of each test 

benchmark function corresponding to ADE are shown in Fig. 2. 

Table 4 

ADE and DE benchmark function test comparison results 

Benchmark 

function 

Best 

fitness 

DE Average 

fitness 

ADE Average 

fitness 

Sphere 0 0.0307 0.0022 

Rosenbrock 0 9.8143 3.2575 

Griewank 0 0.0614 0.0375 

Rastrigin 0 5.1943 4.7951 

Schwefel’s 2.22 0 0.1941 0.0575 

Schwefel’s 1.2 0 0.6562 0.0802 

From the comparison of the results of the ADE and DE 

algorithms in Table 4, the search performance of the ADE 

algorithm is significantly better than that of the DE 

algorithm. It can be seen from Figure 2 that although the 

convergence speed of ADE is not fast at the initial stage of 

algorithm iteration, with the increase of the number of 

iterations, the differential variation factor is also increasing 

so that the population individuals in the late iteration can 

still have a certain development ability. 

 

(a)                                  (b)                                  (c)                          

 
(d)                                  (e)                                  (f)                          

Fig. 2 – Convergence effect diagram of the adaptive differential evolution algorithm in the benchmark function: a) Sphere function;  

b) Rosenbrock function; c) Griewank function; d) Rastrigin function; e) Schwefel’s 2.22 function; f) Schwefel’s 1.2 function. 

1.2. PERFORMANCE TEST OF MPC CONTROLLER 

Functional modules in the MATLAB simulation platform 
are required to test the performance and improvement of the 
MPC controller's parameters. The simulation system's three 
main modules are the reference trajectory setting, motion 
controller, and controlled object. 

The S-type velocity trajectory planning algorithm [10,11] 
sets the reference trajectory. This algorithm produces a 
trajectory image with continuous acceleration. The control 
function 𝐔(𝑘)  of the system is trapezoidal, and the 
reference acceleration is obtained through the S-type 

velocity trajectory planning algorithm. The jerk is set 

to 4 mm/s3, and after 1 second of jerk, the reference control 

action reaches a maximum value of 4 mm/s2. The system 
goes through a sequence of acceleration, uniform 
acceleration, deceleration, uniform velocity, acceleration 
and deceleration, uniform deceleration, and deceleration, in 
that order, within 1-second intervals, to complete the S-
shaped velocity trajectory planning. 

Factors such as friction and unmodeled dynamics are not 

considered in the state space modeling of parallel platforms 

[12]. Therefore, bases reference control action 𝐔(𝑘) , 
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Gaussian noise with a standard deviation of 2 mm/s2 and 

fixed noise with a fixed value of 0.2 mm/s2  are 

superimposed to simulate external disturbances and model 

mismatches. For the reference control effect after 

superimposed noise, the effect of using the open-loop control 

method to control the controlled object is shown in Fig. 3: 

 

Fig. 3 – S-shaped speed trajectory open-loop control. 

Figure 3 shows that after the acceleration of the controlled 

object is superimposed on the interference noise signal, the 

actual velocity and displacement have seriously deviated 

from the expected trajectory. The effect of open-loop control 

could be better, and a motion controller must be designed to 

control the controlled object. To apply the ADE algorithm in 

the process of MPC parameter optimization, the MPC is 

designed according to the control law, 

 �̂�(𝑘) = −(�̅�𝐓�̅��̅� + �̅�)−1�̅�𝐓�̅�(�̅�𝐗(𝑘) − 𝐘𝑟) (3) 

The control effect was evaluated using the evaluation 

function of 

𝐹𝑐𝑜𝑠𝑡 = 

∑ {[𝐗(𝑘) − 𝐘𝒓(𝒌)]T[𝐗(𝑘) − 𝐘𝑟(𝑘)] + 𝐔𝐓(𝒌)𝐔(𝑘)}𝑛
𝑘=1 + 𝑁2. (4) 

Each individual in the ADE algorithm corresponds to a set 

of parameters [P Q R N]T  of the controller. Set the 

number of individuals in the population to 100, the crossover 

factor to 0.5, and the adaptive variation factor to be 

dynamically calculated by eq. (2).  

The number of iterations is 10, and the discrete time step ts 

is 0.01 seconds. After each mutation and crossover process, all 

individuals in the population are brought into Equation (3). 

This step tracks the reference trajectory and detects the system 

state of the controlled object according to the feedback loop. 

Use eq. (4) to evaluate the performance of MPC control 

parameters and keep the best ones. The optimal control 

parameters obtained after the algorithm is completed are 

shown in Table 5: the N 2 , which introduces the term eq. (4) 

has successfully reduced the prediction time domain and 

improved the real-time performance of the control system. 

In addition to directly punishing the N2 term in eq. (4), 

the 𝐏, 𝐐,  and R  parameters are all indirectly punished 

through the control effect generated by the control effect of 

eq. (3). Equation (3) is obtained, assuming that the control 

action U  is unconstrained. Therefore, the penalty R for 

energy consumption is small, while the penalty for steady-

state error P and process error Q is large. In the physical 

system, the power supply mode is DC [13–15], which is not 

sensitive to energy consumption. Therefore, it is better to use 

a larger control amount to ensure better control performance 

without exceeding the parallel platform's power load and 

physical limit.  

Table 5 

MPC control parameters obtained by ADE algorithm 

Control 
parameter 

N P Q R 

Parameter 

value 
3 [9.9736

7.1022
] [5.0224

9.4630
] 0.01 

The parameter group [P Q R N]T  obtained by 

ADE solution meets the requirements of the control system. 

In physical system deployment, limiting the control effect 

within a safe range is necessary. 

The control law of eq. (3) is used to verify the MPC 

control performance and robustness. Combined with the 

control parameters in Table 5, the motion control of the 

model after adding noise in Fig. 3 is performed. A position 

loop PI controller was added as a control group to verify the 

superiority of MPC control performance. The effect of using 

MPC and PI controllers to control the noise trajectory is 

shown in Fig. 4. 

The acceleration in Fig. 4 is the control action U(k). It can 

be seen from Fig. 4 that both the position loop PI controller 

and the MPC can complete the position servo tracking task 

very well. Further, observe the velocity tracking curve and the 

control action U(k). However, the PI controller does not 

consider the motion speed and energy consumption 

accordingly. Therefore, the speed curve and acceleration curve 

tracking effect could be better. In the case of the same 

interference noise, after model predictive control, the motion 

speed curve of the controlled object almost completely 
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coincides with the reference speed curve. It shows that the 

MPC controller can complete the displacement and velocity 

tracking of the reference trajectory at the same time. In 

addition, the MPC controller U(k) deviation from the reference 

value is also smaller than that of the PI controller, indicating 

that the MPC has stronger energy control performance. 

 

Fig. 4 – Comparison of MPC and PI control effects. 

Then, the position servo tracking error of the PI controller 

and MPC will be compared. Draw the displacement error of 

the two algorithms during the entire movement process, as 

shown in Fig. 5. 

 

Fig. 5 – Error of PI controller and MPC with reference displacement. 

It can be seen from Fig. 5 that the servo tracking accuracy 

of MPC is higher than that of the PI controller under the same 

noise environment. It can be concluded that the MPC 

algorithm has better control performance and stronger 

robustness than the PI controller. 

3. DISCUSSION AND CONCLUSION 

The controller constructed by the dynamic method has a 
better dynamic response, which is the key to further 
improving the control performance of the parallel platform 
[16-19]. In this paper, an MPC is first designed to control the 
6-DOF parallel platform. Then, based on the swarm 
intelligence optimization idea, the loss function for 
optimizing the MPC parameters is constructed, and the ADE 
algorithm is used to optimize the MPC parameters. Then, the 

MPC algorithm is implemented on the upper computer of the 
control center by using C++ language. The physical objects 
of the parallel platform are controlled, and good control 
results are obtained. Finally, the S-shaped velocity trajectory 
planning algorithm was completed by simulation 
experiments on MATLAB, and the control effects of MPC 
and position loop PI controller in a robust disturbance 
environment were compared, verifying the MPC algorithm's 
superiority. In future research, we will test our platform in 
more diverse environments to explore control schemes for 
specific industrial application scenarios. 
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