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PALMPRINT CLASSIFICATION USING A FIXED NUMBER OF 
KEYPOINTS 
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In this article we use, for palmprint feature extraction, descriptors generated with SIFT (Scale-invariant feature transform) 
algorithm. The main idea was to generate for each image in the dataset, the same number of keypoints. We deduced an 
algorithm that, for a given image, computes a fixed number of SIFT keypoints. The matching procedure is based on the nearest 
neighbor ratio equation. To test the efficacy of our method, we performed experiments on five well-known palmprint databases. 
The experimental results indicate that this type of approach yields very good classification results. Our results are better than 
those obtained in some recent papers. 

1. INTRODUCTION 
In our times, modern technology is present almost 

everywhere in day-to-day life. Many of these applications 
require an authentication process. One of the easiest to use 
(especially on mobile phones) and most reliable biometric 
characteristics is the palmprint information.  

The methods deduced for solving the palmprint 
recognition problem were adapted depending on the type of 
image available. Images of palms were acquired using 
various categories of devices. These devices produced 
contactless or contact-based images, high resolution or low-
resolution images, 2D or 3D images, or images acquired 
with multiple types of tools.  

For the contactless images, the databases with palm 
prints that are used in experiments can be classified into 
three categories. In the constrained category, which is the 
most numerous, the background is uniform, and the hand 
has a fixed position and orientation for all images.  In the 
semi-constrained group of datasets, the background is non-
uniform, or the hand position and orientation are variable, 
but not both at the same time. Mobile phone cameras 
usually produce images in this category. In the last 
category, the unconstrained ones, the background, and the 
hand pose do not respect any restrictive rules. 

To test our method, we employed five well-known 
datasets, namely: CASIA (Institute of Automation, Chinese 
Academy of Sciences) [1], CASIA Multi-Spectral [2,3], 
GPDS (Las Palmas de Gran Canaria University) [4], IITD 
(Indian Institute of Technology in Dehli) [5] and PolyU 
(The Hong Kong Polytechnic University) [6]. They contain 
constrained and semi-constrained images. 

The quality of the proposed palmprint recognition 
methods is commonly evaluated using measures such as 
EER (Equal Error Rate), AUC (area under the ROC curve), 
(average) accuracy, and rank 1. 

For solving the palmprint recognition problem different 
approaches were tested by using directional features [7,8], 
texture features [9], or combinations of these two [10].  In 
recent research, discriminative features were deduced with 
a learning process [11–13], and a cross-dataset study [14]. 
Deep Learning methods were also employed for palmprint 
recognition [11,14]. 

In [15–18], one can find detailed information on the 
methods developed for solving the palmprint recognition 

problem. 
Keypoint characterization for palmprint images was 

employed in a few papers. In [19] the authors present a 
method with three steps, a preprocessing one, the SIFT 
feature extraction step, and a refinement of the matched 
keypoints using RANSAC and local palmprint descriptors. 
In [20] a biometric system that uses both the hand shape 
features and SIFT extracted palmprint features is proposed. 
A features fusion process is employed and SVM is used for 
classification. The SIFT method is applied [21] only after 
parts of the palmprint with no line information were 
eliminated. The matching procedure was improved in two 
ways, by matching keypoints that have only small 
orientation differences and by eliminating the false 
matches. In [22] the SIFT keypoints matching process is 
improved by using the geometric relations between the 
compared keypoints, thus eliminating false positive 
matches. In [23] the authors analyze five feature extraction 
methods (SIFT and SURF included). In a preprocessing 
step, histogram equalization is performed. SVM and k-NN 
are used for classification. The results obtained with SIFT 
are not very encouraging. 

The algorithms that use keypoints for image 
characterization perform a keypoint-matching step for 
comparing two images. If the same set of parameters for the 
SIFT procedure [24,25] is employed, different numbers of 
keypoints are generated for different images. In this paper, 
we are using a method that computes a fixed number of 
keypoints for an image. The method we developed is 
named a fixed number of keypoints (FINUK) and 
iteratively adapts the contrast threshold SIFT parameter to 
compute for an image a given number of key points. We 
show that generating the same number of keypoints for 
each image involved in the classification procedure leads to 
very good recognition results, on all the employed datasets. 

Our present paper has six sections. Section 2 is dedicated 
to the five datasets and variants that we are using in the 
experimental tests. In Section 3 we present the computation 
of the SIFT keypoint descriptors and the keypoint matching 
process. In Section 4 we detail the FINUK algorithm that 
allows us to compute for an image a fixed number of 
keypoints (when possible). Section 5 is dedicated to the 
results of our experiments. We end with the section 
dedicated to conclusions and future directions of research. 
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2. DATABASES 
We tested our method using five constraint palmprint 

datasets: CASIA, CASIA Multi-Spectral, GPDS, IITD, and 
PolyU. 

The CASIA dataset (denoted CASIA in this paper) has 
5502 .jpg images, each one of 640×480 pixels. There are 
grayscale palmprint images for several 312 persons. For 
each person, for each hand, there are a minimum of 8 and a 
maximum of 11 images. 

CASIA Multi-Spectral Palmprint image database 
(denoted CASIA-MS in this paper) contains images from 
100 different people. The images are captured using self-
designed multiple spectral imaging devices. Each palm 
image is 8 bit gray-level JPEG file. For each hand, the palm 
images are captured in two different sessions, the time 
interval between them being larger than one month. In each 
session six palm images are acquired, three for each hand. 
These are captured using six different electromagnetic 
spectrums at the same time; between two samples being 
allowed a variation in hand posture.  

The GPDS dataset has images for 100 persons, ten for 
each one, so it consists of 1000 images. All the images are 
color images for the right palm. The images are in .bmp 
format. The size of each image in the dataset is 1600×1200. 
In the acquisition process, there was no rule for the hand’s 
pose. In our experiments, we used three versions of this 
dataset: the original dataset, denoted GPDS-F, the second 
one that contains segmented grayscale images (401×401 
pixels), denoted GPDS-S, and a third dataset that contain 
also segmented images but of size 128 × 128 pixels, named 
GPDS-S-S.  

The IITD palmprint database consists of 2601 palmprint 
images, 1300 for the right hand and 1301 for the left hand. It 
was captured from 230 people, 14 and 15 years old. There are 
five or six images for each left and right palm. The images are 
in .jpg format, 1600x1200 pixels. So, there are a total of 460 
palms in the IITD dataset. The original dataset (denoted by 
IITD) was automatically segmented and normalized (denoted 
as IITD-S in this paper). We used in our experiments the 
original dataset and the segmented images, BMP grayscale 
images of dimensions 150×150 pixels. 

The PolyU dataset contains 7752 images, for left and 
right hands, from 193 subjects. So, there are a total of 386 
palm images, each with several 11 to 27 samples. The 
images are in .bmp format, dimension 384 × 284 pixels and 
are acquired in two different sessions with about 60 days 
between the two sessions. In Figure 1 are one sample from 
each dataset. 

3. SIFT FEATURE EXTRACTION AND KEYPOINT 
MATCHING 

For keypoint generation, we use SIFT algorithm 
developed by Lowe in [24,25].  For an image, SIFT 
algorithm computes in four steps, a variable number of 
keypoints. The number of computed keypoints depends on 
the content of the image. Then, one associates with each 
such a point a feature vector with 128 elements.  

Using the SIFT features, a test image classification is 
made depending on the number of matching keypoints 
between the test image and the training images. 

The matching keypoints procedure between two images 
is described below. We first compute SIFT descriptors 
(keypoints) for each image of the dataset. Let’s consider 

two images, U and V with m and respectively n descriptors, 
denoted u1, u2,…, um and v1, v2, …, vn. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

Fig. 1 – Example of images from datasets: (a) - CASIA, (b) - CASIA 
Multi-Spectral, (c) - GPDS, (d) – GPDS_S, (e) – IITD Left, (f) – IITD Left 

segmented, (g) – IITD Right, (f) – IITD Right segmented, (i) -PolyU  

Matching the keypoints of the two images is computed in 
the following way: 

1. Calculate the distances between each feature vector 
associated with image U and each feature vector associated 
with image V; m×n distances are computed.  

2. The keypoint with feature vector ui from image U 
matches the keypoint vk of the V image if the following 
condition is fulfilled:  

                              (1) 

The parameter T is a real positive value, less than 1. This 
threshold parameter lets us control the keypoints matching 
procedure. It is very important to notice that a keypoint 
from image U can match only one keypoint from image V. 
More details about the keypoint extraction and the 
matching process can be found in [26]. 

The classification process is performed as follows. For a 
test image one computes the matching keypoints with the 
images in the training set. The image from the training set 
that has a maximal number of matched keypoints with the 
test image provides the label. If there is more than one 
image in the training set with this property, one chooses the 
image at a minimum distance from the test image. This 
distance is computed as the average of distances between 
the locations of the matched keypoints. 

In the experiments, we tested three distances in the first 
step, Manhattan, Euclidean, and Canberra. All results 
presented in this paper are for the Manhattan distance, 
which provided better results in faster computing time.  

kjvuTvu jiki ¹£ ,),(dist),(dist
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In our first experiments we used the default values in the 
parameters of SIFT algorithm. Then we studied the 
influence on the classification results of the number of 
octaves in each layer, the contrast related threshold and the 
edge related threshold. We deduced that the most 
significant influence is provided by the contrast related 
threshold, cT. So, in all our computations we employed pre-
established, default values for all parameters except this 
one.  

If we use a pre-established, fixed set of SIFT parameters, 
there exist images with no keypoints associated, images 
with very few key points and other with a big number of 
keypoints are computed. This situation has the following 
inconveniences:  
- if an image has no keypoints it cannot be classified; 
- images with a small number of associated keypoints 

are often misclassified; 
- it seems not to be reasonable to perform a matching 

procedure between an image with very few keypoints 
and an image with a large number of keypoints.  

    The same problem was encountered when applying 
keypoint characterization on occluded iris images [27]. 

We have to note that the number of computed keypoints 
for any two images we intend to compare, influences the 
computing time in the matching algorithm. So, the 
consuming classification time for images with large number 
of keypoints is big because the matching procedure is 
computationally expensive. 

Computing manually the set of SIFT parameters for each 
image in the dataset is not an option. 

We decided to address this issue from a different point of 
view. We propose an iterative method that computes a 
given number of keypoints (or a number in a narrow 
interval), by finding the appropriate value for the cT 
parameter. In the next section we’ll detail the proposed 
method, named a fixed number of keypoints (FINUK). 

4. FINUK METHOD FOR KEYPOINT GENERATION 
The FINUK method iteratively generates a fixed number 

of SIFT descriptors by adjusting the value of the contrast 
threshold parameter cT, the other parameters remaining 
unchanged. This method is applied on each image. 

One chose three natural numbers, K, Imax and ΔK, where 
K is the desired number of descriptors that one wants to 
compute, for an image, Imax is the maximal number of 
iterations that FINUK performs. Imax is a safety parameter, 
introduced to avoid endless computations. If after Imax 
iterations the algorithm does not compute the desired value 
for cT, the algorithm stops returning the contrast threshold 
value that computes several SIFT descriptors closest to K. 
In the successful case, the algorithm stops if the computed 
cT value generates several descriptors the interval [K–ΔK, 
K+ΔK]. For ΔK = 0, the algorithm either allows computing 
exactly K descriptors or it stops after Imax steps. In our 
computations, we used the following assignments Imax = 49 
and ΔK = 1. 

The algorithm computes the cT value as follows. One 
chooses an initial value for cT (we used cT = 0.04 as a 
default starting value). The idea behind the algorithm is 
simple. One searches two values for the cT parameter, cT1 
and cT2, such that the first one obtains k1 descriptors with k1 
< K–ΔK, and for cT2, k2 descriptors with k2 > K + ΔK. Then 
one generates the set of descriptors for the cT value that 
verifies the equation: 

                                                   (2) 

If the number of computed descriptors satisfies the 
desired condition, the algorithm stops. Otherwise, 
computations continue in the following way: 
• if we get fewer descriptors than K–ΔK, one continues 

the computations using the interval (cT, cT2); 
• If we get more descriptors than K+ΔK, one continues 

the computations using the interval (cT1, cT). 
When computing the initial values for cT1 and cT2 one 

considers that when one computes keypoints with decreasing 
values for the cT the number of keypoints increases and when 
the value of cT is successively increased one obtains fewer 
and fewer descriptors.  Let k be the number of descriptors 
obtained for the default value cT = 0.04: 
• if k is in [K–ΔK, K+ΔK], the algorithm stops; 
• if k > K + ΔK then cT2 = cT; the desired value for cT1 is 

found by successively dividing by 2 the cT value, cT = 
cT/2, until one computes less then K–ΔK descriptors; 
this process stops if the maximal number of iterations 
is achieved; 

• if k < K–ΔK then cT1 = cT; the desired value for cT2 is 
computed by successively multiplying by 2 the current 
cT value, cT = 2*cT , until one computes more than 
K+ΔK descriptors; this process stops if the maximal 
number of iterations is achieved. 

 We use the FINUK method in the recognition process in 
the following way. First, we compute, for a given value of 
the cT parameter, the average number of keypoints for the 
images in the training set. Using FINUK, we compute for 
each image a value cT that will approximately generate this 
average number of keypoints. This type of computations are 
denoted FINUK(cT). 

5. RESULTS 
We used two types of tests. One is a Leave-One-Out 

(LOO) approach: we consider each image as a test image 
and the other formed the training set. In the second one we 
placed in the training set q images per person with q = 1, 2, 
3, and 4, the remaining images were placed in the test set. 
For each q, we considered 10 selections of training sets. In 
this case the results are presented as average accuracy and 
standard deviation. In our experiments we used for the 
threshold parameter T from eq. (1) values from 0.1 to 0.9, 
with a 0.1 step. Because the best results were obtained for 
T = 0.6 and 0.7 (especially for 0.6), we choose to present in 
this paper the experimental results obtained for these values 
of the threshold parameter. We used the SIFT method 
implemented in OpenCV [28]. 

We first computed some statistical values: the total 
number of keypoints for all the images in the dataset, the 
minimal, the maximal, and the average numbers of 
keypoints, the max/min ratio, the difference max-min and 
standard deviations of keypoint numbers value. For the total 
number of keypoints for a dataset, we present approximate 
values that we obtained by dividing the exact values by 103. 
In Table 1 are these statistical values for IITD-F with SIFT 
contrast threshold cT ∈ {0.03, 0.04, 0.05, 0.07, 0.08, 0.10}. 

For cT = 0.10 there is an image for which only 4 
descriptors were computed while there are 18 images with 
more than 40 descriptors associated (10 times more). For 
cT = 0.04 there are 462 images that have over 100 
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descriptors (88 among them have over 150 keypoints and 
16 have over 200 keypoints) and 364 images with at most 
50 descriptors. For cT = 0.03, SIFT computes at least 250 
descriptors for 233 images and 722 images have less than 
100 descriptors (15 among them have at most 50 
descriptors). The difference between the maximum and 
minimum number of descriptors varies from 51 (for cT = 
0.10) to 568 (cT = 0.03). As can be seen in Table 1, the 
ratio between the maximal and minimal number ranges 
from 6.60 (for cT = 0.08) to 18.75 (for cT = 0.03). One also 
notes that for decreasing values of cT one obtains 
increasing values for the standard deviation. 

Table 1 
Statistics for IITD-F collection 

 
Statistics 

cT values 
0.03 0.04 0.05 0.07 0.08 0.10 

total 388 203 138 88.9 77.3 62.9 
min 32 21 16 11 10 4 
max 600 266 146 77 66 55 
avg 148.8 78.2 53 34.2 29.7 24.19 

max/min 18.75 12.67 9.13 7.00 6.60 13.75 
max-min 568 245 130 66 56 51 
std. dev. 73.9 31.0 16.6 8.06 6.68 5.50 

These big differences between the numbers of descriptors 
generated for the different images are not specific to the 
IITD dataset only. The same phenomenon is present in the 
other palmprint datasets. For the contrast threshold cT = 
0.04, we generated the SIFT descriptors for all the images 
in IITD, CASIA, CASIA-MS, and PolyU and then 
computed the same statistical values as in Table 1. The 
obtained values are in Table 2. 

Table 2 
Statistics for cT = 0.04 

 IITD-F GPDS-F CASIA CASIA-MS PolyU 
No elem. 2601 1000 5502 7200 7752 
No descr. 203.2 183.8 169.6 569.6 1335.2 

Min 21 5 7 23 55 
Max 266 2442 428 654 511 
Avg. 78.2 183.81 30.82 79.11 172.24 

max/min 12.67 488.4 61.14 28.43 9.29 
max-min 245 2437 421 631 456 
std dev. 31.04 243.41 25.12 29.95 60.62 

 
For the GPDS-F dataset, there is an average of 184 

descriptors per image, 15 images have over 1000 
descriptors, and one of them has 2442 keypoints. On the 
other side, 60 images have less than 20 descriptors, among 
them, there are 4 images with less than 10 descriptors. 260 
images have at most 50 descriptors while 92 images have 
more than 500 descriptors, and 80 have over 800 
descriptors. The big differences between the minimal 
number and the maximal number of generated descriptors 
were observed also for CASIA, CASIA-MS, and PolyU 
datasets. Note that the standard deviation has very big 
values, especially for GPDS-F. From our tests, we found 
out that images with a small number of descriptors usually 
are misclassified. With these two tables, containing 
statistical values, we want to point out the discrepancies 
between the images in the datasets in what concern the 
number of computed keypoints. 

It is extremely difficult to choose from the start, a value 
for the contrast threshold parameter that will be suitable for 
all the images in the datasets. For cT = 0.04 we have an 
average of 31 descriptors for CASIA, 184 for GPDS-F, and 
172 for PolyU.  

From Table 2, we have cT = 0.04, for the images in IITD, 
an average of 79 descriptors per image. A natural problem 
that we addressed was the following: if we generate for all 
the images in IITD the same number of descriptors, let’s 
say 79, do we obtain better recognition? We intend to use 
the FINUK algorithm to study this problem. 

In Table 3 are the results (in percentages) for the IITD 
dataset, using the LOO type of test. The parameter cT takes 
the following values {0.04, 0.05, 0.06, 0.08, 0.10}, and the 
matching threshold T in (1) has two values, T=0.6 and 
T=0.7, respectively. In this table are the recognition results 
when no calibration of the number of keypoints was 
performed and when FINUK method was employed.  

We observe from the results in Table 3 that applying 
FINUK, although the keypoints computing time increases, 
the recognition results are superior. Thus, for cT = 0.04 and 
T = 0.6 using FINUK leads to an increase in the recognition 
results from 98.81 % to 99.27 %, and for T = 0.7 from 
96.35 % to 98.82 %. For cT = 0.08 the difference is even 
bigger, 89.58% to 93.00% for T = 0.6 (almost 3.5 %) and 
for T = 0.7 from 77.97 % to 86.70 % (almost 9 %).  

Improving the recognition results was observed for the 
other datasets too. Thus, for CASIA, with cT = 0.04, one 
obtains using the standard approach (with no parameter 
tuning) a result of 94.33 %. Using FINUK(cT), we obtained 
98.58 % for T = 0.6. For T = 0.7, the difference in results is 
from 83.33 % (standard computations) to 97.33% (FINUK).  

We noted that when the values of the contrast threshold 
parameter decrease, SIFT will generate an increasing 
number of descriptors. This fact leads to better recognition 
results even when no FINUK is applied. It should be noted, 
however, that the classification time is proportional to the 
number of descriptors. This obviously led us to a new 
problem: is it possible to obtain good recognition results by 
using FINUK method with small numbers of descriptors for 
each image? This would implicitly lead to superior 
performance at a shorter processing time. 

Table 3 
Recognition results for IITD with different values of the parameters 

cT 0.04 0.05 0.06 0.08 0.10 
T=0.6 98.81 96.89 95.39 89.58 82.93 
T=0.7 96.35 92.81 88.74 77.97 65.28 

FINUK(cT), T=0.6 99.27 98.08 96.50 93.00 89.16 
FINUK(cT) T=0.7 98.92 97.15 94.58 86.70 77.85 

 
In Table 4 are the results (in percentages) obtained when 

FINUK method was applied to generate 10, 20, 30, 40 and 
50 descriptors for each image in the dataset, for all the 
datasets. 

Note the results over 99% obtained for CASIA and 
CASIA-MS when using 40 and 50 descriptors per image. 
For IITD datasets, the original one and the segmented one, 
the results obtained using 30 descriptors are similar (the 
difference is under 1%). For the GPDS things change, the 
smallest segmented variant, GPDS-S-S, provided the best 
results. One possible explanation for these big differences 
in recognition results for the three variants of GPDS is the 
non-uniform background in GPDS. A preprocessing of the 
background could lead to improving the recognition results. 

Table 4 
Recognition results for all datasets 

 
Datasets 

Number of generated descriptors 
10 20 30 40 50 

IITD 60.05 85.93 93.00 96.35 98.00 
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IITD-S 80.93 92.12 93.96 96.12 97.35 
GPDS 64.60 81.70 85.20 87.40 89.30 

GPDS-S 77.40 86.70 90.60 92.60 93.30 
GPDS-S-S 95.10 97.70 98.40 98.50 98.90 

CASIA 60.81 92.77 98.58 99.38 99.56 
CASIA-MS 92.19 98.61 99.83 99.94 99.96 

PolyU 25.76 72.38 91.42 95.98 97.91 
 

Obviously, increasing the number of descriptors/images 
leads to obtaining better results. For example, for IITD-S 
dataset, when we generated 100 keypoints per image, we 
obtained a recognition rate of 98.62%. For IITD, with 78 
descriptors per image, we obtained a result of 99.27%. For 
GPDS-S-S, with 75 keypoints the recognition rate is 
99.60%. Note that the recognition results in the LOO 
scenario are very good for all datasets. 

In Tables 5 and 6 we present (average) recognition 
results (in percentages) when using the second scenario, 
i.e., we place in the training set q images for each person, 
the rest of the images are for testing. Because for each n, 
we chose 10 random selections of training sets, the results 
are of the form average recognition rates ± standard 
deviation. The results in Table 5 are for CASIA dataset, for 
which we generated 10, 20, 30, 40, or 50 
descriptors/images. In Table 6 we performed the same type 
of computations for the GPDS-S-S dataset. 

The recognition results obtained by using only 1, 2, 3, or 
4 images/person in the training set are very similar to those 
obtained using the LOO framework. 

Table 5 
Recognition results for CASIA, q = 1, 2, 3, 4 images/person in training set 
 

q 
Number of generated descriptors 

10 20 30 40 50 
1 60.86±0.61 92.76±0.38 98.58±0.16 99.38±0.10 99.56±0.07 
2 61.01±1.06 92.79±0.64 98.58±0.26 99.39±0.18 99.56±0.12 
3 61.38±1.21 92.96±0.79 98.62±0.27 99.42±0.20 99.58±0.13 
4 60.94±1.34 92.64±0.85 98.51±0.35 99.34±0.25 99.52±0.20 

Table 6 
 Recognition results for all GPDS-S-S, for q = 1, 2, 3, 4 images/person in 

training set 
 

q 
Number of generated descriptors 

10 20 30 40 50 
1 95.10±0.48 97.70±0.34 98.40±0.22 98.50±0.22 98.90±0.18 
2 95.06±0.84 97.68±0.69 98.39±0.44 98.49±0.41 98.90±0.35 
3 94.36±0.46 97.19±0.32 98.14±0.30 98.27±0.27 98.77±0.30 
4 94.87±1.18 97.52±0.85 98.25±0.64 98.37±0.63 98.80±0.51 
 

Note the very interesting fact that we obtain similar 
results regardless of the value of q (which influences the 
size of training and test sets). For CASIA, the difference 
between the best and the worst result from Table 5 when 
generating 50 descriptors/image is only 0.06 % (0.06 % 
represents only 3 images from this dataset), and for GPDS-
S-S this difference is 0.13 % (that represents just one 
image). These results suggest that this method is 
appropriate to be used when in the training set are very few 
images for each person. 

We studied another aspect of this method. Is it possible 
to use it as a preliminary, selection step that computes a 
reduced subset of images like the test one? Our idea is to 
use FINUK with a small number of keypoints and select top 
p images from the training set, similar with the test image. 
On this top p subset, we intend to perform the final 
classification step, this time using a finer method for image 
characterization. One of the options is to use on top p also 
SIFT with FINUK, but this time using a considerably larger 

number of descriptors. In this paper, we studied if in the 
first 100 most similar images generated with SIFT-FINUK 
method one can find images similar to the test image. We 
applied FINUK to generate for each image 10, 20, 30, 40, 
and respectively 50 keypoints. In Table 7 are the results 
expressed as the percent of images that have no similar 
image in the first 100 images generated by SIFT-FINUK 
algorithm. 

Table 7 
Retrieval results for all datasets – percent of images that do not have 

similar images in the top 100 
 
Datasets 

Number of generated descriptors 
10 20 30 40 50 

IITD 1.58 0.35 0.23 0.15 0.12 
IITD-S 4.69 1.46 1.00 0.69 0.58 
GPDS 1.30 1.00 0.10 0.10 0.20 
GPDS-S 6.00 3.50 2.30 1.40 1.00 
GPDS-S-S 0.50 0.20 0.40 0.20 0.20 
CASIA 1.42 0.24 0.05 0.05 0.04 
CASIA-MS 0.36 0.44 0.00 0.00 0.00 
PolyU 10.69 0.92 0.12 0.03 0.01 

 
Note that for IITD with 50 descriptors/image only 3 

images have no similar image in the first 100 selected 
images (when using 80 descriptors this number is reduced 
to zero). 

One obtains very good results for all the datasets, the best 
one is for CASIA-MS (which is natural because this is the 
largest dataset consequently the training set is also large). 
For CASIA and GPDS only 2 images have no similar 
image in the first 100 selected using 50 descriptors/image. 
For IITD this number is 3 and for PolyU just one image is 
not retrieved in the first 100 selected with SIFT-FINUK 
method. 

We compared the recognition results obtained by 
applying SIFT-FINUK method described in this paper on 
CASIA and GPDS-S-S (results computed by generating 50 
descriptors/image) with the results reported on these two 
datasets in [7,12]. The ALDC-M method reported in [7] and 
SDDLM from [12], are one of the best results on these two 
datasets. The results are in Table 8 for CASIA and Table 9 
for GPDS-S-S and are for the scenario when n 
images/person were placed in the training set. The results 
are in the same form as those in Table 5 and Table 6. 

Table 8 
 Comparative results for CASIA 

 q = 1 q= 2 q= 3 q = 4 
FINUK 99.56±0.07 99.56±0.12 99.58±0.13 99.52±0.20 

ALDC-M 86.16 ±1.03 92.03±0.97 93.65±2.18 94.64±1.35 
SDDLM 85.63±1.03 97.01±0.13 97.70±0.68 98.87±0.39 

Table 9 
Comparative results for GPDS-S-S 

 q = 1 q = 2 q = 3 q = 4 
FINUK 98.90±0.18 98.90±0.35 98.77±0.30 98.80±0.51 

ALDC-M 85.53±1.82 92.85±1.09 95.06±0.93 97.70±0.52 
SDDLM 85.75±1.14 89.66±0.32 96.5±0.28 99.5±1.01 

 
The method proposed in this article produces very good 

results. These results are similar regardless of the number 
of images for each person that are placed in the training set. 
From Table 8 and Table 9 we can see that we have very 
good recognition results when we only have one image per 
person in the training set. The results in this situation are 
much better than those provided by using the methods 
described in [7] and [12]. A further improvement for 
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CASIA dataset can be obtained by segmenting the palms. 
We intend to adapt the threshold methods described in [29] 
for palmprint segmentation.  

It should be noted that our method is very stable; the 
dispersion is smaller in almost all cases for the FINUK 
method. The same good results are obtained for the other 
datasets used in our tests, i.e., the results obtained using 
only one image per person in the training set are superior to 
the others obtained with the ALDC_M and SDDLM 
methods. Thus, for IITD, with 50 descriptors generated for 
each image and one test image for each person an average 
classification percentage of 98.10 % is obtained, compared 
with 85.07 % for ALDC_M and 85.11 % for SDDLM. 

Finally, a few remarks can be made regarding the 
computing time required by FINUK method. The operation of 
generating descriptors is time-consuming. However, for a 
given dataset this operation is performed only once. It should 
also be noted that for extremely large collections it is possible 
to generate descriptors on several computers in parallel.  

6. CONCLUSIONS 
We presented in this paper a method for the palmprint 

recognition problem, that uses fixed numbers of SIFT 
keypoints that are computed. For generating a fixed number 
of keypoints we developed FINUK method, which adapts 
the contrast threshold parameter of SIFT algorithm. We 
show that using this method the palmprint recognition 
results are significantly improved. We also show that this 
method can be used to select a subset of candidates for a 
test image. On this subset, one can further apply a finer 
characterization method, thus obtaining better recognition 
results. This type of approach will be addressed in a future 
paper. We study the recognition rates on palmprint datasets 
with full hand images and on variants that contain 
segmented palmprints.  

We have presented results obtained for five palmprint 
datasets and we show that the results are very good, in 
some situations are even better than those obtained in some 
recent papers.  The computational time for large datasets is 
big, but, as we have already stated above, these 
computations are performed only once, and the generation 
process can be done using parallel computations. 

We intended to study the proposed FINUK method 
behavior on images with missing information and on noisy 
palmprint images.  

Received on 12 January 2022 
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