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Pitch angle control in wind turbines is required to obtain maximum efficiency from wind turbines at variable wind speeds. Since the wind 
turbine pitch control structure is not linear, the control cannot be fully achieved, and oscillations occur at the power output. This 
oscillation can increase because the pitch angle cannot be adjusted stably. This study employs pitch angle control using artificial neural 
networks, a proportional-integral-derivative (PID) controller, and adaptive neuro-fuzzy inference systems (ANFIS) methods. When the 
artificial neural network, PID, and ANFIS outputs are compared, it is evident that the system created using the artificial neural network 
yields better results than the PID. However, the best output is obtained with ANFIS pitch angle control. Two types of performance indices 
are used in the performance comparison: the error performance indices and the time response performance indices. Considering the 
control performance parameters, the maximum overshoot of the PID-controlled system is 0.68 %, while the maximum overshoot of the 
artificial neural network-controlled system is 0.48 %. The maximum overshoot of the ANFIS-controlled system is 0.46%. As a result, 
better system performance and a more stable power output are obtained compared to the studies in the literature.

1. INTRODUCTION 
Today, it is observed that access to fossil fuels has become 

more difficult due to various political tensions, and therefore, 
the costs of using these resources have increased. Also, climate 
change is another challenge that we must overcome. It is a 
historical fact that similar energy crises have been experienced 
in the past. To mitigate the impact of these energy crises, it is 
essential to increase the use of alternative, sustainable energy 
sources. One of the sustainable energy sources is wind energy. 
One method for generating power from wind energy involves 
the use of wind turbines. 

The amount of electricity produced by a wind turbine is 
generally related to the size of the wind turbine and its 
components [1,2]. For example, a larger blade sweep area 
results in more output power. In addition, the most critical 
factor affecting wind turbines' output power is the wind 
speed coming to the wind turbine [3,4]. Wind speed is an 
essential factor in determining the location of wind turbines. 
Depending on the wind speed, the operating regions of the 
wind turbines are defined [5]. In these regions, the mode in 
which the wind turbine will operate was determined. This is 
also called the wind-power curve. A power curve shows how 
the power of a wind turbine changes with wind speed. 
Variable speed variable blade angle wind turbines have three 
different operation zones. This raises three distinct situations 
or regions that require attention. In zone 1, the wind 
speed(Ω) is lower than the wind speed needed for the wind 
turbine to activate, and the wind turbine is kept closed until 
the wind speed reaches a certain speed. In other words, wind 
turbines do not operate in this region and are at a standstill. 
In region 2, the wind speed(Ω) is between the turbine 
operating wind speed and the nominal power wind 
speed(Ωs). The wind turbine is operational in this region, and 
the blade angle is not controlled. In zone 3, the wind speed 
is controlled to supply a continuous rated output. This region 
refers to the area up to the maximum wind speed at which 
the wind turbine pitch should be controlled. As seen in Fig. 
1, no matter how much the wind speed in this region 
increases, constant power is always observed at the output. 
However, to prevent excessive wind speed loading in this 
region, the system is turned off and disabled when it is above 
a specific value (1.3 Ωs ≥ Ω). This part is shown in Fig. 1 as 
a 4th region. Since the wind speed is variable in zone 3, blade 

angle control becomes essential to obtain a constant power 
output. The blade angle, zero in zone 2, must be at a nominal 
value in zone 3. Thanks to the servo motors on the blades, 
the blade angle can be adjusted by rotating the blades. The 
controller determines the amount of rotation and when it will 
occur. These regions are shown in Fig. 1 as region 1, region 
2, region 3, and region 4.  

Various methods can adjust wing position. Pitch angle can 
be controlled using artificial neural networks (ANN), fuzzy 
logic control (FLC), optimization, PID systems, and even by 
combining these systems. Numerous studies in the literature 
utilize artificial neural networks [6–12]. In the study by 
Tiwari et al., blade angle control was employed to regulate 
the wind energy conversion system [13]. The permanent 
magnet synchronous generator (PMSG) used in the system 
is a 2 MW wind turbine. It is stated that the proposed 
controller has approximately 2%, 5%, and 9.5% more power 
output at the wind-rated speed than the backpropagation 
neural network, FLC, and PI, respectively. 

 
Fig. 1 – Wind turbine operating regions. 

In another 2 MW wind turbine study, an attempt was made 
to adjust the pitch angle with a Radial Basis Function 
Network (RBFNN) and a Multilayer Perceptron Neural 
Network (MLPNN) [14]. In this study, a multi-layer 
perceptron artificial neural network was used. The multi-
layer perceptron artificial neural network gave much more 
successful results compared to a PID-type control. Error 
rates were almost half those of the PID. In an uncontrolled 
state, the system turns itself off by exceeding a certain power.  

It was stated that RBFNN reached stability earlier than 
MLPNN. Dahbi et al. [15] conducted a study using a 6.6 kW 
wind turbine system. They used the Leveneberg-Marquardt 
method. They experimented with an artificial neural network 
featuring two hidden layers, with cell numbers of 10 and 20, 
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respectively. The output obtained using the Levenberg-
Marquardt method shows good performance at the optimal 
rotor speed. 

A radial basis artificial neural network is used to control 
the pitch angle of a 5 MW turbine [16]. As a result of the 
studies, although power oscillations were observed, it was 
found that artificial neural networks were more successful 
than the PI control. 

In another study, an adaptive controller is designed for 
variable speed, variable blade angle wind turbines. A 
synthesis of the Nussbaum-type function and adaptive radial 
basis function neural network is proposed to protect the 
output power against disturbances from unknown sources 
and to prevent fluctuations. The blade angle is given as input 
to the neural network while the generator torque is kept at its 
nominal value. Finally, the performance of the proposed 
controller is compared with that of a PI controller and a new 
adaptive method through simulations. The simulation results 
confirmed the analytical results regarding the stability of the 
closed-loop system. Moreover, the proposed controller 
outperformed both the PI Controller and the existing 
adaptive method [17]. 

Ernesto et al. [18] use a teaching-learning-based 
optimization algorithm in pitch angle control for small wind 
farms constructed in areas with high wind speed variation. 
The wind speed and its magnitude variation are used to 
determine PI controller gain parameters. The algorithm is 
stated to have a rapid calculation time, lower overshoot, and 
reduced stabilization period under various wind 
disturbances.  

Deep learning and fuzzy logic methods are also used in the 
pitch angle control of wind turbines [19]. Practical wind 
speed estimation and prediction are achieved using deep 
learning neural networks. This value is used in FLC as an 
input. It is found that a 21 % improvement is obtained 
concerning the PID controller.  

A hybrid intelligent learning based adaptive neuro-fuzzy 
algorithm is used to schedule the pitch angle of a variable-
speed wind turbine, which has 2 MW of rated power. The 
parameters of fuzzy membership functions (MFs) are trained 
by the artificial neural network (ANN). In forward pass 
training, the least squares estimator is used, while in 
backward pass, the back propagation gradient descent 
method is used [20]. It is stated that, in terms of accuracy 
used neuro-fuzzy algorithm has attained good results with 
least RMSE and MSE measures. 

A PID controller with automatic gain adjustment using 
a fuzzy logic controller (FLC) is introduced in an article 
[18]. In this study, FLC membership functions are 
determined by measuring wind speed at some calculated 
distances, wind variability statistics, and wind path 
dynamic analysis. The response of the actuator is 
predicted before the arrival of the wind to the rotor. In 
another study, a wind turbine pitch controller was 
designed and implemented using offline fuzzy model-
predictive control. They stated that their proposed system 
guarantees the stability of the wind turbine generator with 
actuator and linear matrix inequality constraints [21]. 

 2. MODELLING OF WIND TURBINE 
Different wind turbine models are used in the literature. 

The overall block diagram of analysed wind turbine is shown 
in Fig. 2 [22–24]. The modelling of wind turbines is essential 
for designing efficient and reliable wind energy systems, 

evaluating different control strategies, conducting 
performance simulations, and optimizing wind farm layouts. 

The power produced from the wind turbine depends on the 
wind speed (v), the power coefficient (Cp), the blade swept 
area (A), and the air density (ρ). The formula for calculating 
the power output of wind energy conversion systems is stated 
in eq. (1). The wind turbine output power function, in which 
factors such as wind energy coming to the turbine rotor, 
turbine swept area, and air density are affected as given in 
eq. (1). The moment transferred to the shaft is expressed in 
eq. (2),  
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Pt refers to the output power obtained from the turbine, p 
is air density(p=1.225), Cp is the power coefficient, A (=πr2) 
is the rotor swept area, β is the wing angle, and λ is the tip 
velocity ratio. The power coefficient for this study is taken 
as follows: 
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The tip velocity ratio λ in eq. (3) is, 
λ = /&0

1
          (5) 

wt is the turbine speed, and R is the rotor blade length.  

3. MODELLING OF CONTROL SYSTEMS 
Classic PID controllers are widely employed in control 

systems because their structure is simple and can be easily 
realized [25]. However, wind turbines are strongly nonlinear 
systems, so a linear PID controller cannot meet the system's 
requirements. Typically, the PID algorithm is combined with 
an intelligent algorithm to create a new controller that can 
achieve significantly improved control performance.  

Since wind turbine output is proportional to the cube of 
wind speed, produced wind energy is not constant. For this 
reason, the power output of wind turbine fluctuates. As can 
be seen from the wind turbine modelling section, the wind 
turbine is a nonlinear system. To improve power quality and 
maintain the stable output generated by a wind turbine, this 
paper presents a pitch controller mechanism based on three 
types of controllers: artificial neural networks, PID 
controllers, and ANFIS, for smoothing output power 
fluctuations.  

3.1 PID MODELLING 
The classical method of pitch angle control is the 

proportional integral derivative (PID), which is based on a 
mathematical model of the system with feedback of the 
controlled variable, as it calculates the error between the 
measured and desired values [6]. To adjust the controller, the 
weights of the proportional constant, the integral time, and 
the derivative time (gains) are determined [10]. However, in 
a variable-speed wind turbine, the optimal response changes 
as a function of the magnitude of the wind speed variation. 
This variability makes a PID controller unstable, particularly 
when subjected to drastic changes in wind speed control. It 
does not require more labor and complex circuits to work at 
a reasonable performance [21–26].  

The BA block diagram representation of the wind turbine 
with a PID controller is made using the MATLAB/Simulink 
software program. 
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As shown in Fig. 3, the PID controller controls the servo 
motor, which adjusts the blade angle. The wind speed signal 
applied to the system is a ramp signal. Its magnitude ramps 
from 0 to 25m/s in 9 s. In this manuscript, six different blade 
pitch angle control system configurations are designed. Four 
of these systems are designed with the help of an ANN 
controller, one with ANFIS, and one with a PID controller. 
The features of the designed PID system are given in the 
second section. The features and names of the developed 
artificial neural network systems are presented in Table 2. 
The design parameters of ANN systems are specified in 
Table 3, and ANN results are shown in Table 4. In addition, 
the output power and characteristic status obtained from each 
simulation are presented in detail in section 5. 

3.2 ARTIFICIAL NEURAL NETWORKS MODELLING 
Artificial neural networks are systems that can learn using 

various algorithms without relying on traditional 
programming methods. The sigmoid function is widely used 
in artificial neural networks. In addition, the hyperbolic 
tangent sigmoid and Purelin functions are also used when 
creating the artificial neural network architecture [27].  

Backpropagation is used for error minimization in 
artificial neural networks. Input data is propagated forward, 
and the error between the output and the expected value is 
calculated. This error is propagated backward to determine 
its effects on the weights. Finally, the weights are updated 
using the learning rate. The Purelin function is generally used 
in the output layer to obtain a linear output in artificial neural 
networks.  

In this study, various activation functions are used in 
the input and hidden layers. The type of artificial neural 
networks used in simulations is always a feedback 
artificial neural network. Feedback artificial neural 
network is a teacher network. Levenberg-Marquardt 
feedback function (trainlm), flexible backpropagation 
function (trainrp), or momentum and adaptive learning 
rate backpropagation gradient descent function 
(trainingdx) were chosen as the learning function. The 
results of each network are tabulated and shown in Table 
1. A sample constructed artificial neural network (ANN) 
model is called YSA6 and is shown in Fig. 5. 

3.3 ANFIS MODELLING 
The basis of this method is the Takagi-Sugeno-Kang 

inference system. It aims to minimize error output by 
adjusting the membership functions in the most effective 
manner. ANFIS uses gradient descent and a least squares 
approach with feedback while ensuring the best fit of 
outputs with given inputs. Membership values are 
considered in ANFIS systems, which are expected to be 
set automatically [27,28]. There are inter-layer connection 
points, and each node represents the entry. These values 
enter the membership function. Then the rules are 
normalized. Then the weights are calculated. Finally, all 
signals are summed up. 

ANFIS combines fuzzy logic and neural networks to 
transform input values into output values. The first layer 
takes the inputs, while the second layer fuzzifies them using 
membership functions. The third layer applies fuzzy rules 
and calculates firing strengths, and the fourth layer 
normalizes these values. The fifth layer computes the 
weighted results, and the sixth layer aggregates these results 
to produce the final output. 

4. SIMULATION OF THE SYSTEM MODEL 
The created wind turbine and pitch angle control system 

are obtained with the help of block diagrams in MATLAB 
Simulink. Simulink block diagram of wind turbine NN 
control system is shown in Fig. 3. It has three blocks, which 
are the controller block(NN block), the pitch motor block, 
and the turbine block. 

 
Fig. 3 – Wind turbine NN control system. 

The output power of the wind turbine used in the system 
is 500 kW. It is also chosen as the reference value. The DC 
servo motor, located on the wind turbine blades, determines 
the pitch angle. The pitch angle, that is, the Beta(β) value at 

 
Fig. 2 – Wind turbine overall system block scheme. 
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the output of the DC servo motor, is given as the input value 
in the wind turbine. The ramp wind speed value can be 
created with Simulink blocks or pulled from the workspace 
with the From Workspace block. 

Figure 4 shows the internal structure of the wind turbine 
block. In this internal structure, based on eq. (1), the output 
power is obtained by using the power coefficient. The power 
coefficient of the wind turbine is given in eq. (3). The power 
coefficient is the efficiency of the wind turbine, and it is not 
fixed [5,18]. 

The total number of input values used to train artificial 
neural networks in experiments is 90014. The type of neural 
networks used in experiments is always a feedback neural 
network. Levenberg-Marquardt feedback function (trainlm), 
flexible backpropagation function (trainrp), or Momentum 
and adaptive learning rate backpropagation gradient descent 
function (traingdx) are chosen as the learning function. 

 
Fig. 4 – Wind turbine block content. 

Table 1 
Simulation parameters of artificial neural network models. 

ANN 
model 

# of  
Layers 

Training  
Function 

Activation  
Function 

# of  
Epochs 

YSA11 3 traingdx logsig- purelin 2500 
YSA6 3 trainlm tansig-purelin 10000 
YSA2 3 trainlm tansig- purelin 7300 
YSA3 3 trainlm logsig- purelin 7367 
 
In the artificial neural networks created in the 

experiments, 3-layer networks are preferred. In the output 
layer of all of them, MATLAB cell and Prelin are chosen as 
the activation function. The performance function used in 
networks is mean square error (MSE). Simulation 
parameters of the artificial neural network models used are 
shown in Table 1. In all experiments, the artificial neural 
network consisted of 1 hidden layer. The number of nodes 
present in the layers is given in Table 2. 

Table 2 
Neuron numbers(nodes) used in layers.  

ANN model 
Name 

Input  
Layer 

Hidden  
Layer 

Output  
Layer 

YSA11 9 9 1 
YSA6 9 9 1 
YSA2 10 11 1 
YSA3 5 5 1 

 
As shown in Table 2, the training functions, epochs, and 

activation functions used in the experiments vary. 

 
Fig. 5 – Neural network model of the YSA6. 

5. RESULTS AND DISCUSSIONS   
In this article, a wind turbine system is simulated in 

MATLAB/Simulink, and the output power is obtained by 
controlling the simulated wind turbine with artificial neural 
networks, ANFIS, and PID. The output powers of the 
designed wind turbine and pitch angle system models are 
examined. As a result of the studies carried out, the following 
conclusions are reached. These conclusions are analyzed in 
an individual subtitle, which is explained below.  

 
Fig. 6 – Output Power of the wind turbine with PID controller. 

5.1 WIND TURBINE OUTPUT POWER VARIATION 
WITH PID, YSA6, AND YSA11 CONTROLLER 

The PID controller block is simulated in 
MATLAB/Simulink. The proportional gain is -1, and the 
integrator gain is -0.0001. Derivative coefficient 0 is chosen.  
The outputs of the PID controller are shown in Fig. 6. In 
addition, the output power is shown in a zoomed view in Fig. 
8. In the system established with PID, the maximum peak 
point in the appropriate characteristic system, which is 
created and is reached at 3,965 s. by adjusting the pitch angle 
and obtained output power is 503.4 kW. The maximum 
overshoot (MPI) of this system is 0.68%. The output power 
exhibits small oscillations for a short period and then reaches 
equilibrium.  

In YSA6 model, MATLAB neural network/data manager 
is used in the artificial neural network, and the Levenberg-
Marquardt function is chosen as the training function. NN 
model of YSA6 is shown in Fig. 5. As the activation 
function, tansig and purelin are only selected in the output 
layer. The number of steps is determined as 10000. It is 
observed that this artificial neural network achieves its 
maximum point at a power of 503.3 kW, and the maximum 
overshoot (MYSA6) of this system is 0.66% in percentage 
terms. However, as seen in Fig. 7, it is not in a balanced and 
symmetrical image, unlike the system established with PID. 
The simulated YSA6 reached a stable state almost 
simultaneously with the system installed with PID. It reaches 
the steady-state value in 5.31 seconds. 
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Fig. 7 – Output power of the wind turbine with ANN controller 

(YSA6 is used). 

In the simulation YSA11, which is prepared with the 
trainingdx training function in MATLAB NN toolbox, logsig 
is chosen as the activation function, and Purelin function is 
selected in the output function. The number of steps is 
determined as 2500. The maximum output power in this 
simulation is 502.4 kW, achieved in 3.964 seconds, yielding 
better results compared to the PID results. In addition, better 
damping is received, as can be seen in Fig. 8. Thus, it is seen 
that the simulation named YSA11 responds faster than PID. 
The maximum overshoot of this system is 0.48%. 

5.2 WIND TURBINE OUTPUT POWER VARIATION 
WITH YSA2 AND YSA3 CONTROLLER 

In the simulation YSA2, in which the trainingdx training 
function is used in this artificial neural network, tansig is 
chosen as the activation function, and purelin function is 
selected in the output function. The number of steps is 
determined to be 7,300. The outputs of the YSA2 and YSA3 
controllers are shown in Fig. 9. The YSA2 experiment gave 
a worse result than the experiments created with the artificial 
neural network, compared to the PID output. As a result of 
this experiment, it is observed that the value reaches 3.97 s 
at its maximum. Its maximum value is 508.1 kW. Its 
maximum overshoot is 1.616%. At 3.962 s, it gives a value 
as the minimum point, and this minimum value is 496 kW. 
The value at which output power reaches the steady state is 
502.8 kW. The differences with other experiments are more 
apparent collectively in Table 3. 

Table 3 
Output power of the wind turbine with the proposed controller and 

overshoot values  
Model 

Name  

Minimum 

(kW) 

Maximum 

(kW) 

maximum 

overshoot 

steady state 

difference 

YSA11 498.133 502.4 %0.48 0.00225 
YSA6 498.520 503.3 %0.66 0.00185 
PID 496.795 503.4 %0.68 0.00152 
ANFIS 497.928 502.3 %0.46 0.00151 
YSA2 496.205 508.1 %1.616 0.02808 
YSA3 498.267 503.8 %0.755 0.00184 

 
Fig. 8 – The detail view of the output power of the wind turbine with PID, 

YSA6, and YSA11 controllers.  

In YSA3, the Levenberg-Marquardt training function is 
used. Logsig is used as an activation function, and the Purelin 
function was used in the last layer. Maximum output power 
reached at 3.968 seconds and 503.7 kW.  

 
Fig. 9 – Detail view of the output power of the wind turbine with PID, 

YSA2, and YSA3 controllers. 

Its maximum overshoot is 0.755% in percentage. At 
3.966 s, it yields a value corresponding to the minimum 
output power, which is 498.2 kW. The steady-state value of 
the output power is 500.2 kW. In this case, it can be accepted 
that it has worse results compared to PID. 

5.3 WIND TURBINE OUTPUT POWER VARIATION 
WITH ANFIS CONTROLLER 

The output power obtained when the ANFIS controller is 
used as a pitch angle controller is shown in Fig. 10. As can 
be seen from Fig. 10, the output power reaches its maximum 
value in 3.96 s, which is 502.3 kW. The maximum overshoot 
is 0.46%. This value stands out as the best value among the 
experiments. At 3.959 s, it gives a value at the minimum 
point, and this minimum value is 497.9 kW. The steady-state 
value of the achieved power is 500.15 kW. In this case, it has 
better results compared to the PID controller used as a pitch 
angle controller. 

 
Fig. 10 – Detail view of wind turbine output power graph for ANFIS and 

PID pitch controller. 

Statistical performance indices also analyse outputs of 
proposed controllers. For comparing the performance of 
proposed controllers in the considered mission, integral 
absolute error (IAE), integral squared error (ISE), integral 
time-weighted absolute error (ITAE), and integral time square 
error (ITSE) measures have been considered as comparative 
indices. To evaluate the performance of the proposed 
controllers, the values of these indices are shown in Table 4.  

Table 4 
 Generator speed response comparisons based on four performance indices 

for the six regulator models. 
Name IAE ISE ITAE ITSE 

YSA11 114.72 1.78 104  1.2 103 1.64 105 
YSA6 4.38 105 1.76 1010 1.44 105 4.70 1010 

PID 5.40 105 1.86 1011 1.46 106 4.78 1011 
ANFIS 113.62 1.73 104  1.0 103 1.53 105 

YSA2 6.61 105 1.86 1011 1.66 106 5.80 1011 
YSA3 5.40 105 1.86 1010 1.46 106 4.78 1011 
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The statistical performance indices of the control system 
with ANFIS yield the smallest error. The second-best one is 
YSA11.  

6. CONCLUSIONS 
In comparison to previous studies in the literature [6,10], 

better results are obtained with the ANFIS controller. In 
addition to the system working well with the PID controller, 
the experimental simulation of the YSA11 and YSA6 showed 
that they work more stably in conjunction with the PID 
controller, providing better output power than the PID 
controller. While the maximum value of the PID-controlled 
system is 503 kW, its maximum value is measured as 502.4 
kW in the experiment named YSA11. The difference revealed 
that the system designed with the artificial neural network and 
utilizing the training function is better, as it has less overshoot. 
In addition, the wind turbine output results in artificial neural 
network-supported simulations, named ANN2 and ANN3, 
which give worse results than the system established with PID. 
The function used in the experiment named YSA11 is 
different from the function used while designing ANN2 and 
ANN3, as shown in Table 3.  

It should also be noted that the artificial neural network 
system created using the trained and login functions gave 
better results than the artificial neural network controller 
created using the transit and Levenberg-Marquardt 
functions. As shown in Table 3, the control system 
established using ANFIS achieved the best maximum 
overshoot value and yielded the best output values. 
Compared to the previous literature studies [28], better 
results are obtained with the ANFIS controller. It has been 
demonstrated that the control system employing the ANFIS 
method achieves the best performance. The control system, 
with the YSA11 method, generates the second-best 
performance. 
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