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Efficient heat management in the context of semiconductor miniaturization demands unconventional solutions to navigate 

constrained design spaces. The emergence of unsupervised learning as a versatile design companion capable of processing multi-

disciplinary datasets presents promising avenues for streamlined bio-inspired solutions for fundamental conduction problems. As a 

case study, we tackle the pivotal area-to-point problem that led to the formulation of the Constructal Law. 
This study proposes a novel methodology harnessing denoising diffusion probabilistic models (DDPM) to seamlessly integrate features 

from topology optimization, constructal theory, and biomimetic structures. We use DDPM as a digital non-equilibrium complex system to 
generate geometric patterns for conductive heat sink design. These patterns are sampled to address the original formulation of the area-to-point 

problem. 
This study emphasizes the significance of morphological freedom in addressing multi-objective problems, reinforcing arguments 

first formulated within the constructal paradigm. Our framework facilitates low-cost sampling of intricate shapes capable of serving 
multiple temperature objectives by synthesizing principles from different fields. We show the emergence of dendritic structures to solve 

distribution problems in an unsupervised learning scenario, drawing a parallel between information and energy flows. 
This research underscores the transformative potential of Generative AI in blending design features across disparate disciplines, 

a potent tool for developing conductive heat sink solutions beyond deterministic optimization approaches. 
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1. INTRODUCTION 

The exponential increase in computing power as part of the digital transformation follows a direct 

consequence of a two-order of magnitude reduction in transistor scale. Formulated in 1965, Moore’s Law 
accurately predicted doubling the number of transistors in an integrated circuit every two years. The more stringent 

requirements for heat dissipation capacity and the ever-smaller scale size progressively ruled out natural 
convection, fan, and liquid cooling. They ultimately limited the space available for high-conductivity material [1].  

The cooling of electronic devices has become a hierarchical problem, considering the different objectives 

at each scale. At the chip level, the goal is to maintain a minimal temperature despite the high local fluxes. At 
the module level, where the heat loading becomes prominent, a minimal temperature gradient becomes relevant 

to reduce losses. Nonetheless, most consumer electronics operate under extensive variations in ambient 
conditions, making the ability to handle dynamic loads a priority at the system level.  

Initially studied for electronics cooling applications, the area-to-point problem [2] contributed to 
formulating the Constructal Law as a general principle for resource allocation. This problem addresses 

bottlenecks in confined spaces and has seen a variety of alternative solutions, from gradient-based topology 
optimization through simulated bionic growth to particle swarm optimization [3–5].  

The applicability of the Constructal Law as a design tool for challenges across various design spaces 
demonstrates that solutions developed for the ATP problem can be scaled seamlessly. Additionally, 

technologies like additive manufacturing open the design space, requiring new computational solutions to 
explore non-conventional avenues of inquiry. 

2. COMPUTATIONAL METHODOLOGY 

In this context, we propose a unifying generative approach to draw parallels between living and non-living 

systems to explore effective bi-material patterns. For this purpose, we use a diffusion algorithm developed to 
replicate non-equilibrium thermodynamics [6] for generating de novo structures. This method allows design 

feature blending and fast unsupervised sampling from a multi-modal heterogeneous dataset. We show that the 
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AI agent can navigate a combinatorial design space and that the workflow enhances the morphological freedom 
of the samples, creating de novo candidates that visually display a high level of hybridity. 

In the context of generative AI, diffusion models produce a Markov chain that gradually maps a known 

distribution (e.g., a Gaussian) onto the underlying distribution of the dataset. Replicating statistical mechanics 

processes, the algorithm learns to estimate the steps for the inverse probability flow required to reach the smooth 

target distribution [7]. This strategy was motivated by the authors considering the Kolmogorov forward and 

backward equations, which showed that the two paths can be covered by respective small-perturbation diffusion 

processes that take the same functional form [6]. 

In the annealed importance sampling configuration, the algorithm estimates the multi-variate probability 

distribution from a single sample taken from the forward trajectory. Simulating a quasi-static physical process, 

the generative model assumes infinitesimally low diffusion rates and estimates the probability distributions of 

the intermediary steps using the Jarzynski equality [8].  

In thermodynamics, this equality relates the exponential average of work done during non-equilibrium 

transformations to the free energy difference between two states. The denoising probabilistic model 

fundamentally resembles Langevin dynamics in discretizing the stochastic Fokker-Planck equation [7]. Hence, 

the amount of energy (here, information) lost along the path between the equilibrium distributions is 

proportional to the step size. This parallel provides a qualitative understanding of the diffusion rate as the 

critical parameter controlling sample quality [9]. 

 

Fig. 1 – Diffusion probabilistic model that uses Markov chains that add (reverse process) and remove (forward process) noise and 

minimize local cross-entropy losses to establish computational and information efficient paths between the data and Gaussian 

equilibrium distributions. 
 

 

Fig. 2 – Three-modal dataset: hierarchical tree-like patterns with nested splitting, pre-optimized samples with boundary conditions 

and objectives to match the ATP problem, and bio-inspired leaf motifs with self-similarity. The freedom to morph and the degree of 

orderliness of the three families of samples are inversely correlated. 
 

Given the method's unsupervised learning nature, the input data set will dominate the sampled structures. 

For the two-dimensional area-to-point (ATP) problem, we have curated a collection of microstructures: digital 

dendritic patterns with recursive scaling, output samples from an in-house topology optimizer following solid 

isotropic material with penalization, and processed close-up leaf pictures available online [10]. 
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We reproduced the steps to normalize the three data modalities for brevity to compile a cohesive data set 

in Fig. 2. 11k bi-material samples represent each category. The recursive trees, which have a prescribed shape 

and an orderly appearance, carry the least amount of information. Conversely, the leaf structures contain self-

similar and local symmetry-breaking features and require information-dense descriptions.  

3. RESULTS 

Figure 3 reproduces the results of unconditioned diffusion from the data set. They show that the solid 

inductive biases embedded in the three modalities can generate plausible candidates without an objective 

function feedback loop. Contrasting supervised learning aimed at ATP temperature objectives, the diffusion 

model's high-resolution synthesis improved feature interbreeding and produced some asymmetric samples 

through the open-ended generative process. The samples' diversity and the improved freedom to morph can be 

used for designing bi-material solutions for multi-objective problems with arbitrary boundary conditions.  

From a constructal perspective, the non-equilibrium diffusion system improves the information flow 

access and enlarges the communication channels between the three categories in the input data set. 

Nonetheless, the form-function correlation is shown to be preserved in all the samples proposed having 

dendritic structures. The incremental changes caused by the noising/denoising processes, controlled by 

(information) entropy generation minimization, are thus well calibrated for configuration and evolution toward 

design freedom and, ultimately, better performance. Most importantly, the diffusion framework put forward 

provides the information flow architecture required to bridge disparate knowledge domains, growing novel 

branching forms that could quickly adapt for different physics and/or objectives rather than following 

prescriptions, targeting an end design, or mimicking nature [11–13]. 

 

 

Fig. 3 – Unconditioned generation of de novo samples, ordered by origin and feature characteristics. The high resolution of the 

diffusion network yields improved mixing between design features from the three sources, showing enhanced freedom to morph 

compared to the samples obtained in a supervised learning setup (reproduced on the right [14]). 

 

Moving forward from the original area-to-point problem, we have extended the capabilities of generative 

models beyond conductive heat sinks. The bio-inspired non-uniform structures are used to handle complex 

loading conditions, where temperature or heat flux varies across the surface. This adaptability is key in more 

advanced applications such as battery packs or high-performance computing systems where uniform cooling 

patterns would not be optimal. In this regard balancing thermal performance, material use, and manufacturing 

constraints with the hierarchical challenges posed at the beginning requires flexibility beyond conventional 

parametric design. 

In Fig. 4, we show an example of a battery module assembly designed by the Formula Student Imperial 

Racing Green team. The temperature profile of the battery pack displays a clear temperature gradient. By 

morphing bio-inspired form to engineering function, the thermal solution adapts to the requirement of the 

system for enhanced performance and efficiency. 

Results from an 

alternative 

framework based 

on a variational 

autoencoder 
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4. CONCLUSIONS 

To conclude, we have presented a unifying generative design framework that improves the modelling 

resolution of thermal solutions beyond parametric design by enhancing the morphological freedom. This is 

made possible by the application of entropy generation minimization on the information flows to navigate 

complexity and produce dendritic structures from the border of chaos and order. This extends the application 

of constructal design to digital flow systems, demonstrating how natural flow architectures can be replicated 

probabilistically to optimize information and energy transfer, resulting in efficient, adaptive solutions for 

complex thermal and distribution challenges. 
 

 

Fig. 4 – Solid model and temperature distribution of a generic battery pack (top).  

Bio-inspired cooling channel topology generated from diffusion sample matching (bottom). 
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