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Following the author's previous studies, this scientific article uses the proof of the “Principle” of Maximum Work (PMW), used 

in metals plasticity theory and surface tribology, through a more general mathematical framework starting from the fundamental 

Constructal Law. In this paper, the author focuses on the mathematical proof of convexity and normal rule properties of both plastic 

and friction flow criteria. 
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1. INTRODUCTION 

Starting from previous author studies, this research uses the proof of the “Principle” of Maximum Work 

(PMW) defined in metals plasticity theory and surface tribology [1]  through a more general mathematical 

framework starting from the fundamental Constructal Law [2,3], and the Virtual Powers Principle (VPP) 

defined because of the momentum stresses equilibrium. The Constructal Law postulates the natural tendency 

of any finite-size system to evolve towards an optimal space-time configuration, minimizing losses and entropy 

generation.  

Regarding a material deformation during a forming or flow process, under specified 

boundary/loadings conditions, the real mechanical variables defining the flow (velocities, stresses, strain, 

and strain rate) are those that minimize the sum of dissipated bulk deformation and contact surfaces 

friction powers written in terms of all other virtual and admissible states. It is then show that PMW 

becomes a Theorem [4-8] and can be applied to all continuous media (solid, fluid, mushy state, plasma) 

and any type of materials. 

An equivalent form has also been defined for contact friction (isotropic and anisotropic). This paper 

focuses on the mathematical proof of convexity and normal rule laws of both plastic and friction potential. 
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2. GENERAL THEORETICAL FRAMEWORK 

Starting from the Constructal Law which postulate the tendency of all system to search a such 

configuration evolution or flow minimizing losses, as it has already been applied by authors in previous 

research works [4-8], in the case of continuum media flow, this one  is obtained by minimizing the functional 

defining the virtual dissipated or lost power *
dP , i.e.: 

( )
''

* * * * * * d *
d d d

'

P Min P with P : dV v dS' T v dS''
  

   = =   + −  + −       .                   (1) 

Here, “:” denotes the matrix contracted product equivalent to the vector’s scalar product , where * 

represents all admissible virtual values corresponding to all kinematic and mechanical variables: *v – 

virtual velocities vector, *    – virtual strain rate tensor (symmetric part of the velocity vector gradient 

matrix), *    - virtual Cauchy stress tensor, * – virtual shear stress vector occuring on surfaces interfaces 

and dT – imposed stress-force vector regarded also as constraint loading. 

Then the real solution of the flow in terms of real stresses and flow velocities is obtained by minimizing 
*

dP corresponding to the optimization problem (1).  

Using the well known Virtual Power Principle, it has proven the First PMW Theorem: 

 ( ) ( )p 00 0* * * *: , ,        −        − =        ; ( ) ( )* * * *
f fv 0, , 0−  −       −  = ,              (2) 

In a reverse form it can be written the First PMW Theorem using the equivalent form: 

   ( ) ( )p 00 0* ** : , ,      −        − =      ; ( ) ( )* * *
f fv 0, , 0−  −       −  = ,              (3) 

Here ( )*
p     it is the plastic criterion (as isotropic Von-Mises or anisotropic Hill one) and ( )*

f   

represents the friction potential (circular for isotropic friction and elliptic for anisotropic friction where friction 

coefficient is function of sliding directions). 

2.1. Proof of Plastic and Friction Potential Normal Rule 

In conformity with the relationship (2) concerning the stress state, for any infinitesimal stress variation 

   *d    =  −   with  ( )  ( )p p 0d   =  =  it is obtained: 

           d / d : 0 d / d : 0           =                                                   (4) 

A first Taylor development gives  ( )  ( )    p p pd d : /   =       , then: 

     pd / d : / 0       =                                                               (5)  
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Using equations (4) and (5), it can be conclude on the proportionality of  p /    with    and the 

named normal rule law of plastic potential it is obtained, i.e. : 

   p
p p pd / dt / , 0 =  =                                                      (6) 

In a similar way, concerning the virtual friction shear stress can also be prove the friction normal rule law, i.e.: 

f f fv / , 0 = −                                                                   (7) 

Figure 1 shows the potential shape, the plastic strain hyper-vector, and the stress states. 

 

   
(a)                                                               (b) 

Fig. 1 – Schema of real or virtual stress states and the plastic potential surface shape: (a) different positions of infinitesimal plastic 

deformation vector  pd dt = ; (b) plastic potential surface and tangent plane. 

2.2. Proof of Plastic and Friction Potential Convexity 

All tangent hyper-planes on the plastic potential curves can be defined by 

   ( )  ** ** **
p p pg( ) ( ) ( ) : / 0      =   −  +  −     =       , when applying inequality given by equation (3) written in 

the reversible form of the first PMW Theorem (2), for any real stress states situated on a potential curve, together with 

the corresponding normal rule law i.e.  ( )    ( )  * *
p: 0 : / 0    −      −         , it is obtained *g( ) 0    .  

Consequently, the potential curve is located at any point inside the tangent plane’s family. In conformity 

with one of the convexity definition form, the convex shape of stress criteria is then proven. Similar conclusion 

can be obtain concerning the convexity of friction potential.  

Finally, using this convexity property, the two inequalities of equation (2) can be extended to all 

virtual stress or friction shear respecting ( )p 0 0*   −    ( )*
f f 0  −  corresponding to the points inside 

the closed potential curve. It is then possible to define the final form of the PMW Theorem for both stress 

and friction state: 

 ( )   ( )* * *
p 0: 0, , 0      −        −                                                 (8) 

 ( ) ( )* * *
f fv 0, , 0−  −       −                                                 (9) 
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3. RESULTS 

Previous author’s works concerning computation applications for plane compression [4], cylindrical 

crushing [5], direct extrusion [8], and anisotropic contact surface friction [6] show the feasibility of the above 

PMW theorem and its consequences.  

Accurate analytical predictions are obtain to estimate average forming process power P, with an error  

less than 5%, by formula: 

      ( )P P P / 2= +                 (10) 

where 100*(P P) / 2P = − .                                                  

Here P  represents the Upper Bound Power estimation and P  the Lower Bound Power estimation, 

obtained from applying the PMW theorem to specific predefined subspaces of virtual stresses, kinematic 

velocities and boundaries-loadings conditions [4-8]. 

4. DISCUSSION AND CONCLUSIONS 

This paper proves plastic and friction criteria convexity with customary rule laws  corresponding to 

plastic flow of any continuum media. The performed theory has been valid by previous works of the author 

through comparisons of numerical results obtained from Finite Element Modelling (FEM) with analytical 

computations based on the PMW theorem and its consequences. 
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