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The fluid modes generated using a proper orthogonal decomposition (POD) method were predicted for a fluidized bed and a 

power generation turbine. The POD-based reduced-order models were solved using either a Galerkin projection or a deep learning 

strategy. In both cases, as the number of the fluid modes increased, the modes appeared to fragment/bifurcate, indicating that these 

modes follow the constructal law. 
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1. INTRODUCTION 

Inspired by the structural modes identified in structural engineering, fluid mechanicians were able to 

determine the fluid modes of general transport phenomena [1]. Similarly to structural analysis, the fluid modes 

can be used to determine the flow solution if the weightings of the modes are known. Consequently, the 

solution 𝐮(𝐱, 𝑡𝑖) of the transport phenomena can be approximated as 

𝐮(𝐱, 𝑡𝑖) = ∑  𝑀
𝑘=1 𝑎𝑘(𝑡𝑖)𝜙𝑘(𝐱) 𝑖 = 1, … , 𝑀, 

where 𝐮 ∈ ℝ𝑛 is the state vector, 𝜙𝑘 ∈ ℝ𝑛 is the 𝑘-th flow mode, 𝐱 ∈ ℝ𝑑 is the spatial coordinate, 𝑑 is the 

spatial dimension 1 ≤ 𝑑 ≤ 3, 𝑎𝑘 ∈ ℝ is the time coefficient, the weighting of the flow mode, 𝑡𝑖 ∈ ℝ is time, 

and 𝑀 is the number of snapshots. For compressible, non-reacting, three-dimensional flows 𝑛 = 5. 

2. METHODS 

The minimization of the approximation error in (1) requires the minimization of the averaged least-

square truncation error [2] 

𝜖𝑚 =< ‖𝐮(𝐱, 𝑡𝑖) − ∑  𝑚
𝑘=1  𝑎𝑘(𝑡𝑖)𝜙𝑘(𝐱)‖2 >  𝑖 = 1, … , 𝑀, 

where <> denotes the time average and ‖‖ is the 𝐿2-norm. The optimum condition (2) reduces to an eigenvalue 

problem, which for a discrete case is 

R(x, y)𝜙(x) = 𝜆𝜙(𝐱) 𝐱, 𝐲 ∈ ℝ𝑑 

where 𝐑 is the autocorrelation matrix 

R(x, y) = ∑  𝑀
𝑖=1 𝐮(𝐱, 𝑡𝑖)𝐮𝑇(𝐲, 𝑡𝑖)/𝑀. 
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The eigenvectors (or eigenfunctions) of the autocorrelation matrix (4) are the fluid modes, aka basis 

functions or proper orthogonal decomposition (POD) modes. The eigenvalues 𝜆𝑖, 1 ≤ 𝑖 ≤ 𝑀 of (3) determine 

how much relative energy is captured by the POD modes, where the relative energy is defined as 𝜆𝑖/∑𝑖=1
𝑀  𝜆𝑖. 

The POD modes represent the skeleton of the solution. They can be calculated once snapshots of the 

solution are generated. Then the POD modes can be used to generate a reduced-order model (ROM) that allows 

us to predict the solution at any other time and flow conditions. 

The following steps must be completed to generate a POD-based ROM: (a) generate database using 

a full-order model, (b) assemble autocorrelation matrix 𝐑 and extract eigenmodes, (c) substitute 

approximation (1) in the governing equations and perform Galerkin projection using the POD modes, and 

(d) solve system of ordinary differential equations to obtain the time coefficients 𝑎𝑘(𝑡𝑖) and reconstruct 

the solution using (1). 

Since the substitution and the Galerkin projection of step (c) are tedious, we are currently using deep 

learning to determine the time coefficients 𝑎𝑘(𝑡𝑖). Deep learning is a subset of machine learning methods 

based on neural networks, which uses multiple layers in the network. Machine learning is automated data 

analysis during which computer programs (or modules) are learned from data. The model (or computer 

program) describes the relationship between variables (or data) and properties of interest, such as the time 

coefficients 𝑎𝑘. The model is learned using training data, such as the flow snapshots, by using a learning 

algorithm that automatically adjusts the model's parameters to agree with the data. The cornerstones of machine 

learning are (i) data, (ii) model, and (iii) learning algorithm [3]. 

3. RESULTS 

Whether the time coefficients are calculated using Galerkin projection or deep learning, the reconstructed 

solution uses the POD modes. The relative energy of the modes, which indicates the influence of the POD 

modes on the solution, typically decays rapidly, as shown in Fig. 1. This implies that only a reduced number 

of modes, 𝑚, needs to be kept in the approximation. Furthermore, often the energy of the modes vs. number 

of POD modes [4] comes in pairs, that is, modes 𝑖 and 𝑖 + 1 have similar energy, while modes 𝑖 + 2 and 𝑖 + 3 

have similar energy but significantly less than modes 𝑖 and 𝑖 + 1. 

 

Fig. 1 – Cumulative energy (1) vs. number of modes [4].  
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Fig. 2 – First five POD modes of v velocity (left) and pressure (right) [5]. 

 

Figure 2 shows the POD modes of the velocities and pressure in a fluidized bed [5]. It is apparent that as 

the mode number increases, the fragmentation of the contour plots increases. The vertical velocity shown in 

Fig. 2 is fragmented first in the 𝑥 direction while shifting from mode 𝜙0
𝑣 to 𝜙1

𝑣. Subsequently, the fragmentation 

happens in 𝑦 direction while advancing from mode 𝜙1
𝑣 to 𝜙4

𝑣. 

A similar trend of fragmentation/bifurcation is evident in Fig. 3, which shows the POD modes of the 

unsteady flow generated by the rotor-stator interaction in a turbine. In this case, the fragmentation of the 

contour plots is more pronounced than that shown in Fig. 2, as multiple flow features are present in the turbine 

flow. 

 

Fig. 3 – Five most relevant POD modes of energy [4]. 

3. CONCLUSIONS 

The POD modes of transport phenomena equations are the building blocks for the solutions of these 

conservation equations. As the mode number increases, the modes appear to fragment/bifurcate, indicating 

that these modes follow the contructal law. 
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