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FLUID MODES, DEEP LEARNING, AND CONSTRUCTAL LAW
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The fluid modes generated using a proper orthogonal decomposition (POD) method were predicted for a fluidized bed and a
power generation turbine. The POD-based reduced-order models were solved using either a Galerkin projection or a deep learning
strategy. In both cases, as the number of the fluid modes increased, the modes appeared to fragment/bifurcate, indicating that these
modes follow the constructal law.
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1. INTRODUCTION

Inspired by the structural modes identified in structural engineering, fluid mechanicians were able to
determine the fluid modes of general transport phenomena [1]. Similarly to structural analysis, the fluid modes
can be used to determine the flow solution if the weightings of the modes are known. Consequently, the
solution u(x, t;) of the transport phenomena can be approximated as

uxt) = Xty at)de® i=1,.., M,

where u € R™ is the state vector, ¢, € R" is the k-th flow mode, x € R? is the spatial coordinate, d is the
spatial dimension 1 < d < 3, a; € R is the time coefficient, the weighting of the flow mode, t; € R is time,
and M is the number of snapshots. For compressible, non-reacting, three-dimensional flows n = 5.

2. METHODS

The minimization of the approximation error in (1) requires the minimization of the averaged least-
square truncation error [2]
em =< llu(x,t) — Xie; ax(t)d®N* > i=1,.., M,

where <> denotes the time average and |||| is the L2-norm. The optimum condition (2) reduces to an eigenvalue
problem, which for a discrete case is

R Y)$(X) = 1p(X) x,y € R?

where R is the autocorrelation matrix
R(x,y) = XL, ux, tHu’ (y, ;) /M.
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The eigenvectors (or eigenfunctions) of the autocorrelation matrix (4) are the fluid modes, aka basis
functions or proper orthogonal decomposition (POD) modes. The eigenvalues 1;,1 < i < M of (3) determine
how much relative energy is captured by the POD modes, where the relative energy is defined as 1; /3™, 4;.

The POD modes represent the skeleton of the solution. They can be calculated once snapshots of the
solution are generated. Then the POD modes can be used to generate a reduced-order model (ROM) that allows
us to predict the solution at any other time and flow conditions.

The following steps must be completed to generate a POD-based ROM: (a) generate database using
a full-order model, (b) assemble autocorrelation matrix R and extract eigenmodes, (c) substitute
approximation (1) in the governing equations and perform Galerkin projection using the POD modes, and
(d) solve system of ordinary differential equations to obtain the time coefficients a;(t;) and reconstruct
the solution using (1).

Since the substitution and the Galerkin projection of step (c) are tedious, we are currently using deep
learning to determine the time coefficients a (t;). Deep learning is a subset of machine learning methods
based on neural networks, which uses multiple layers in the network. Machine learning is automated data
analysis during which computer programs (or modules) are learned from data. The model (or computer
program) describes the relationship between variables (or data) and properties of interest, such as the time
coefficients a,. The model is learned using training data, such as the flow snapshots, by using a learning
algorithm that automatically adjusts the model's parameters to agree with the data. The cornerstones of machine
learning are (i) data, (ii) model, and (iii) learning algorithm [3].

3. RESULTS

Whether the time coefficients are calculated using Galerkin projection or deep learning, the reconstructed
solution uses the POD modes. The relative energy of the modes, which indicates the influence of the POD
modes on the solution, typically decays rapidly, as shown in Fig. 1. This implies that only a reduced number
of modes, m, needs to be kept in the approximation. Furthermore, often the energy of the modes vs. number
of POD modes [4] comes in pairs, that is, modes i and i + 1 have similar energy, while modes i + 2 and i + 3
have similar energy but significantly less than modes i and i + 1.
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Fig. 1 — Cumulative energy (1) vs. number of modes [4].
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Fig. 2 — First five POD modes of v velocity (left) and pressure (right) [5].

Figure 2 shows the POD modes of the velocities and pressure in a fluidized bed [5]. It is apparent that as
the mode number increases, the fragmentation of the contour plots increases. The vertical velocity shown in
Fig. 2 is fragmented first in the x direction while shifting from mode ¢§ to ¢7. Subsequently, the fragmentation
happens in y direction while advancing from mode ¢7 to ¢7.

A similar trend of fragmentation/bifurcation is evident in Fig. 3, which shows the POD modes of the
unsteady flow generated by the rotor-stator interaction in a turbine. In this case, the fragmentation of the
contour plots is more pronounced than that shown in Fig. 2, as multiple flow features are present in the turbine
flow.
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Fig. 3 — Five most relevant POD modes of energy [4].

3. CONCLUSIONS

The POD modes of transport phenomena equations are the building blocks for the solutions of these
conservation equations. As the mode number increases, the modes appear to fragment/bifurcate, indicating
that these modes follow the contructal law.
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