

ABORDARE NUMERICĂ ASUPRA DETERMINĂRII FRECVENȚELOR DE REZONANȚĂ ALE STÂLPILOR TURBINELOR EOLIENE

Corina-Ioana GHEORGHIU¹, Adelina-Maria CÎRSTOIU¹, Ioan-Dragoş DEACONU¹, Valentin NĂVRĂPESCU¹, Aurel-Ionuț CHIRILĂ¹ ¹Universitatea Națională de Știință și Tehnologie POLITEHNICA București aurel.chirila@gmail.com

Rezumat. În cadrul studiului se prezintă o abordare bazată pe metode numerice 3D pentru estimarea frecvențelor de rezonanță ale stâlpului unei turbine eoliene. Acest tip de sisteme sunt alcătuite din componente care funcționează pe principii electromecanice care sunt surse de oscilații mecanice. Se utilizează mediul FreeCAD pentru realizarea unor geometrii cu structură complexă respectiv mediul MATLAB pentru efectuarea studiului numeric specific analizei mecanice. Pentru validarea metodei se realizează pentru o configurație dată o comparație cu date experimentale.

1. INTRODUCERE

Sistemele eoliene reprezintă o sursă de energie electrică importantă în prezent, iar funcționarea destinată acestor sisteme implică numeroase probleme tehnice de diverse naturi, printre care și cele de natură mecanică. În cadrul arhitecturii turbinelor eoliene există o serie de componente care reprezintă surse de oscilații mecanice, care pot excita stâlpul de susținere al nacelei și palelor turbinei eoliene. În cazul în care aceste excitații se petrec pe frecvențe de rezonanță ale stâlpului de susținere, ca la orice fenomen de rezonanță, apar o serie de solicitări manifestându-se sub formă de vibrații a căror amplitudine este suficient de ridicată pentru a provoca tensiuni importante în structura materialului care pot conduce atunci când persistă un timp mai îndelungat chiar la fisuri, fracturări, crăpături etc.

În primă etapă se prezintă un studiu de analiză modală a unui cilindru gol ai cărui pereți au o anumită grosime, în vederea determinării frecvențelor proprii. Dimensiunile cilindrului și proprietățile de material sunt cele prezentate [1], în care se prezintă totodată și rezultate experimentale cu privire la frecvențele de rezonanță. Pentru realizarea acestui studiu se utilizează mediul MATLAB făcând apel la facilitatea acestui mediu de a rezolva numeric ecuații cu derivate parțiale.

În a două etapă se prezintă studiul pentru forma concretă a unui stâlp de turbină eoliană, care începe prin realizarea geometriei complexe în mediul de proiectare inginerească FreeCAD [2], iar apoi importarea acestea în mediul de calcul ingineresc MATLAB, urmând pașii de la etapa anterioară.

2. STUDIU DE CAZ – CILINDRU GOL – VALIDAREA METODEI

Primul pas în efectuarea studiului este ca prin intermediul uneltei PDE Toolbox [3] din cadrul mediului de calcul ingineresc MATLAB să se definească tipul de problemă și implementarea geometriei cilindrului realizat. În Fig. 1 se prezintă liniile de cod pentru realizarea acestor pași.

```
1 model = createpde("structural","modal-solid");
2 gm = multicylinder([raza_R1 raza_R2],inaltime_cilindru,"Void",[true,false]);
3 model.Geometry = gm;
```

Fig. 1 Definirea tipului de problemă și definirea geometriei de analizat.

Geometria care se obține pentru acest studiu este prezentată în Fig. 2, în care se poate observa cilindrul gol, din mai multe unghiuri.

Fig. 2 Modelul numeric – geometria cilindrului.

Continuarea studiului numeric implică obținerea rețelei de discretizare. În prezent, mediul de calcul MATLAB – PDE Toolbox permite realizarea de rețele de discretizare 3D cu elemente tetraedre. Comanda utilizată în acest sens este *meshGenerate*, iar rezultatul este cel din Fig. 3.

Fig. 3 Rețeaua de discretizare.

În Fig. 4, se prezintă datele tehnice returnate de către mediul MATLAB cu privire la rețeaua generată. Tipul de elemente este cel de ordinul 2.

Fig. 4 Date tehnice ale rețelei de discretizare.

Condițiile pe toate frontierele sunt cele de frontiere libere, aceasta fiind practic și condiția implicită. În urma soluționării problemei cu ajutorul comenzii *solve* se obțin o serie de moduri de oscilație, care sunt reprezentate grafic în Fig. 5.

Fig. 5 Moduri de oscilație ale cilindrului.

În conformitate cu datele expuse în Tabelul 1, prin comparație cu rezultatele experimentale pentru o serie dintre frecvențele de rezonanță se constată că diferențele sunt destul de reduse (diferențe procentuale subunitare), ceea ce confirmă faptul că metoda numerică abordată este acceptabilă.

Tabelul 1								
Rezultate ale frecvențelor de oscilație								
Experiment	Numeric	Diferență relativă						
[Hz]	[Hz]	[%]						
2576	2567	- 0,35						
2960	2966	+0,2						
6320	6275	-0,7						
6536	6492	-0,67						
6614	6632	+0,27						

3. STUDIU DE CAZ – STÂLP TURBINĂ EOLIANĂ

3.1 Realizarea geometriei

Pentru realizarea geometriei stâlpului turbinei eoliene, care este una mai complexă, s-a apelat la mediul de proiectare inginerească FreeCAD. Acesta este prezentat principial în Fig. 6. Geometria este un cilindru gol a cărui secțiune se reduce odată cu creșterea în înălțime, dar distanța δ rămâne constantă.

Pentru a obține această geometrie pot fi mai multe abordări. Una dintre ele ar fi o extrudere axisimetrică a secțiunii longitudinale, iar cealaltă este extruderea pe înălțime a unei secțiunii (metodă aleasă). A doua metodă necesită impunerea unei înălțimi și a unghiului α .

Fig. 6 Moduri de oscilație ale cilindrului.

În Fig. 7 se prezintă primii pași și anume realizarea schiței diametrului exterior, care constă într-un cerc de rază dată.

Fig. 7 Moduri de oscilație ale cilindrului.

Ulterior, această schiță a fost extrudată odată cu redimensionarea diametrului schiței, obținându-se astfel un prim trunchi de con, un corp solid, reprezentat în Fig. 8.

Fig. 8 Primul trunchi de con.

În mod similar s-a procedat pentru a obține un trunchi de con concentric dar de dimensiune mai redusă, deoarece se pornește de la o schiță cu un cerc de rază mai mică decât cel anterior, diferență egală cu grosimea δ . În Fig. 9 se prezintă cele două trunchiuri de con.

Fig. 9 Cele două trunchiuri de con.

Ultima operație geometrică este una logică, și anume operația de scădere, astfel că alegând drept descăzut trunchiul de con exterior, iar drept scăzător trunchiul de con interior, se obține geometria dorită, care este redată în Fig. 10.

Fig. 10 Geometria finală a stâlpului turbinei eoliene.

3.2 Realizarea analizei

În cazul acestui studiu, geometria stâlpului turbinei eoliene fiind mai complexă, este necesară a fi importată în mediul MATLAB. Rezultatul este reprezentat în Fig. 11. Acesta are o înălțime de 50m.

Fig. 11 Geometria importată în MATLAB a stâlpului turbinei eoliene.

În mod similar analizei de la cilindrul gol, pasul următor este generarea rețelei de discretizare, care se prezintă în Fig. 12.

Fig. 12 Rețeaua de discretizare a stâlpului turbinei eoliene.

Datele tehnice ale acestei rețele sunt prezentate în Fig. 13. Și în acest caz, elementele sunt tetraedre, iar funcția de interpolare este de ordinul 2.

Command Window								
ans =								
FEMesh with properties:								
Nodes:	[3×63987 double]							
Elements:	[10×31938 double]							
MaxElementSize:	1.3000							
MinElementSize:	0.3000							
MeshGradation:	1.5000							
GeometricOrder:	'quadratic'							

Fig. 13 Date tehnice ale rețelei de discretizare.

După obținerea rețelei de discretizare s-a rezolvat problema numerică și au rezultat o serie de frecvențe proprii de oscilație prezentate în Tab. 2., iar grafic în Fig. 14 primele moduri.

Tabelul 2											
Rezultate ale frecvențelor de oscilație											
Mod	Frecvență	Mod	Frecvență	Mod	Frecvență	Mod	Frecvență	Mod	Frecvență	Mod	Frecvență
[număr]	[Hz]	[număr]	[Hz]	[număr]	[Hz]	[număr]	[Hz]	[număr]	[Hz]	[număr]	[Hz]
1	1,6893	16	19,873	31	34,501	46	49,428	61	57,687	76	69,096
2	1,6992	17	22,633	32	34,635	47	49,521	62	58,689	77	70,415
3	7,8061	18	23,448	33	36,293	48	50,045	63	58,937	78	71,916
4	7,854	19	23,761	34	36,442	49	50,234	64	60,872	79	72,6
5	9,0262	20	23,912	35	40,242	50	51,025	65	61,408	80	72,901
6	9,0403	21	24,048	36	40,575	51	51,993	66	61,797	81	73,045
7	12,413	22	27,944	37	40,595	52	52,642	67	62,34	82	74,093
8	12,484	23	28,052	38	40,723	53	52,79	68	62,73	83	74,676
9	16,104	24	28,9	39	40,995	54	53,444	69	63,158	84	75,016
10	16,221	25	30,962	40	41,124	55	53,471	70	63,702	85	75,091
11	19,137	26	31,495	41	44,794	56	53,794	71	63,945	86	76,038
12	19,222	27	32,108	42	45,054	57	53,882	72	67,471	87	76,469
13	19,23	28	32,188	43	45,15	58	54,103	73	67,916	88	76,619
14	19,32	29	34,291	44	45,464	59	54,48	74	68,058	89	77,258
15	19,794	30	34,428	45	49,118	60	57,347	75	68,693	90	77,385

Mod	Frecvență	Mod	Frecvență	Mod	Frecvență	Mod	Frecvență	Mod	Frecvență	Mod	Frecvență
[număr]	[Hz]	[număr]	[Hz]	[număr]	[Hz]	[număr]	[Hz]	[număr]	[Hz]	[număr]	[Hz]
91	78,053	97	81,873	103	86,555	109	89,942	115	94,322	121	98,26
92	78,56	98	82,987	104	86,658	110	90,14	116	94,393	122	98,522
93	79,444	99	83,772	105	87,26	111	90,954	117	94,631	123	99,38
94	80,042	100	84,475	106	88,386	112	91,666	118	95,197	124	99,764
95	80,22	101	85,253	107	89,292	113	92,583	119	95,952	-	-
96	80,828	102	85,321	108	89,65	114	93,704	120	97,287	-	-
Mod de oscilate 1 1.68929 Hz	1 Mod de 10 ³ 1.691 7 6 5 4 3 2 1 0	boscilatie 2 323 Hz 7 6 5 4 3 2 1 0	y ³ Mod de oscillatie y ³ 7.80614 Hz	3 ×10 ⁻³ M 7 6 5 4 3 2 1 0	lod de oscilatio 4 7,85404 Hz ×11 6 5 4 3 2 2 0 0	y ³ 9.02616	latie 5 Moo Hz ×10 ³ 4 3 2 1 0	1 de osciliate 6 9.04032 Hz 8 4 3 2 1 0	Mod de oscillatis 10 ⁻³ 12.413 Hz	► 7 Mo ×10 ⁻³ 6 5 4 -3 2 2 1 0	21 de oscilatie 8 12.4836 Hz ×10 ³ 5 4 3 2 1 0
Mod de oscilatie 9 16.1044 Hz	9 Modide o ×10 ⁻³ 16.23	escilatie 10 214 Hz × 10	Mod de oscilatie ⁻³ 19.1373 Hz	11 M	od de oscilatie 12 19.2218 Hz	Mod de oscil 19.2303	atie 13 Mod Hz	l de oscilatie 14 19.3202 Hz	Mod de oscilatie 19.7939 Hz	15 Mo ×10 ⁻³	d de oscilatie 16 19.8733 Hz × 10 ⁻³
	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0		0.012 0.01 0.008 0.006 0.004 0.002 0	0.0	и и 105	0.012 0.01 0.008 0.006 0.004 0.002 0		0.014 0.012 0.006 0.006 0.004	8 7 5 4 3 2 1 0	8 7 6 5 4 3 2 1 0
Mod de oscilatie 1 22.6334 Hz	17 Modide d ×10 ⁻³ 23.44	escilatie 18 483 Hz	Mod de oscilatie 23.7608 Hz	19 M	od de oscilatie 20 23.9117 Hz ×10	Mod de oscil 24.0483	atie 21 Mod Hz ×10 ⁻³	l de oscilatie 22 27.9439 Hz ×	Mod de oscilatie 10 ⁻³ 28.0523 Hz	23 Mo	d de oscilatie 24 28.9001 Hz ×10 ⁻³
	4 3 2 1 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	12 11 10 08 06 04 02	0.012 0.01 0.008 0.006 0.004 0.002 0	8 6 4 2 0		8 6 4 2 0	a 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8 6 4 2 0	4 3 2 1 0

Fig. 14 Primele moduri de oscilație ale stâlpului turbinei eoliene.

4. CONCLUZII

În cadrul studiului se prezintă o abordare pentru identificarea modurilor de oscilație ale stâlpului unei turbine eoliene. Abordarea propusă nu ține seama de partea superioară a turbinei eoliene, sistem de pale și nacelă cu toate echipamentele din interiorul acesteia (generator electric, cutie de viteze dacă este cazul, transformator electric). Cu toate, metoda poate fi aplicată pentru orice structură.

Se constată că există frecvențe de oscilație în intervalul 50Hz - 60Hz, dar și la 100Hz. De asemenea, pentru sistemele electrice cu fundamentala de 50Hz, forțele electrodinamice sunt de 100Hz. Toate aceste vibrații de natură electromagnetică este indicat să fie amortizate prin diverse metode tocmai pentru a nu contribui la excitarea mecanică a stâlpului de susținere.

CONFIRMARE

Lucrarea a fost prezentată la Simpozionul de Mașini Electrice SME'XIX, ediția 2023.

BIBLIOGRAFIE

- 1. R.K. Singhal, W. Guan, K. Williams, *Modal Analysis of a Thick-Walled Circular Cylinder*, Mechanical Systems and Signal Processing, **16**, *1*, pp. 141-153, 2002.
- 2. ***FreeCAD, https://www.freecad.org/.
- 3. ***Mathworks, Partial Differential Equation Toolbox, MATLAB, 2023, https://www.mathworks.com/help/pde/index.html.